模型量化——基础知识 & LSQ论文阅读

本文深入探讨了量化技术的基础原理,包括量化步长、正负量化层级等概念,并详细解析了IBM提出的LSQ论文,该论文介绍了一种基于均匀量化的方法,使网络能够自我调整量化步长。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  感谢陈老师给的机会,有幸能够参加2020年的DAC比赛。我在其中负责目标检测器的调试和量化。自己第一次接触量化这个任务,很多东西都是一点一点学。

一、量化基础

  对于一个全精度的值vvv,若量化步长为sss(也可理解为量化分辨率),正负量化层级(quantization levels )分别为QPQ_{P}QPQNQ_{N}QN。则量化过程为:vˉ=Int(clip(v/s,−QN,QP))\bar{v}=Int(clip(v/s,-Q_{N},Q_{P}))vˉ=Int(clip(v/s,QN,QP))  其中的v/sv/sv/s将全精度值映射到了比特空间,进行端侧修剪之后,返回最近距离的整数。若使用bbb表示量化位数,对于Activations对应的无符号数,有QN=0,QP=2b−1Q_{N}=0,Q_{P}=2^b-1QN=0,QP=2b1;对于Weights对应的有符号数,有QN=2b−1,QP=2b−1−1Q_{N}=2^{b-1},Q_{P}=2^{b-1}-1QN=2b1,QP=2b11(正侧缺1项)。
  解量化操作为:v^=vˉ×s\hat{v}=\bar{v}\times sv^=vˉ×s  量化&运算过程如下图所示:
在这里插入图片描述

二、LSQ论文简介

  这篇论文是IBM在2019年的ArXiv上放出来的论文,全名Learned Step Size Quantization。大概思想就是基于均匀量化,让网络自己去寻找每一层合适的量化步长sss。所以最核心的问题就是如何设定步长关于损失值L的梯度。
  文中给出了解量化值v^\hat{v}v^关于sss的偏导的定义:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值