
AI
文章平均质量分 91
echola_mendes
一个后端程序猿,旨在让所有的技术简单化……
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Dify案例2:基于Workflow的小红书笔记AI智能体以及AI绘图过程中遇到的问题
本文介绍了基于Dify工作流构建小红书笔记自动生成智能体的实践方案。该系统通过Workflow流程实现端到端自动化:用户输入主题后,LLM节点生成吸引人的标题和正文,HTTP请求调用硅基流动API进行AI绘图(替代已下线的原生插件),代码节点提取图片URL,最终模板节点整合输出包含标题、封面图和正文的完整笔记。文章详细说明了AI绘图接口对接、工作流节点配置等关键实现步骤,展示了Dify在内容创作自动化中的应用价值,为类似场景提供了可复用的技术方案。原创 2025-07-30 16:29:28 · 1275 阅读 · 0 评论 -
Dify案例1:基于Chatflow旅行、吃饭、新闻、学习的AI智能体
本文介绍了如何在Dify 1.6.0平台整合MCP(模型上下文协议)服务,打造一个多功能AI智能体。通过配置高德地图、Tavily智搜等MCP服务,结合Dify工作流,实现了涵盖出行规划、美食推荐、新闻查询和学习辅助的智能应用。文章详细展示了从MCP服务接入、Dify工作流搭建到实际测试的全过程,并提供了解决接口超时问题的建议。该方案利用MCP协议的标准化优势,有效解决了大语言模型与外部工具的集成问题,为开发者提供了轻量级、安全高效的AI应用开发新思路。原创 2025-07-22 15:43:27 · 969 阅读 · 0 评论 -
Dify:在MacOS系统下Dify的本地部署与使用
Dify是一个开源的AI应用开发平台,旨在帮助开发者快速构建基于大语言模型的应用程序。平台提供低代码/无代码开发环境,支持多种模式创建智能体,其中最常用的是Chatflow模式。与LangChain相比,Dify更注重生产级部署,降低了工程复杂度;与Coze相比,Dify提供更灵活的自主控制与数据管理能力。本地部署需要Python3.8+和Docker环境,支持多种主流模型厂商。平台功能包括模型配置、知识库管理(支持本地和外部知识库)、智能体创建原创 2025-07-17 16:19:11 · 1836 阅读 · 0 评论 -
Dify升级:Dify1.3.1升级最新版1.6.0详细教程以及xxx not exist问题
本文介绍了如何将Dify从v1.3.1升级到v1.6.0版本。操作步骤包括:从GitHub下载v1.6.0包,修改.env文件,迁移旧版volumes数据目录,最后通过docker-compose启动服务。升级完成后,访问本地安装页面即可确认版本更新成功。整个过程涉及文件操作和Docker容器管理,确保数据安全迁移的同时完成版本升级。原创 2025-07-17 15:42:09 · 353 阅读 · 0 评论 -
基于MCP和数据库进行数据检索实现方式
RAG(检索增强生成)存在检索失败、生成失败和系统级问题三大局限,尤其在处理结构化数据时效果不佳。MCP+数据库方案通过语义解析、逻辑建模和精准检索三层架构,直接对接结构化数据,实现精准高效的查询。相比RAG,MCP+数据库在查询精度、响应速度、领域适配性和复杂逻辑支持方面更具优势,但需注意避免大数据量查询导致的token消耗激增问题。该方案特别适合需要精确检索结构化数据的场景。原创 2025-07-16 16:38:56 · 764 阅读 · 0 评论 -
Streamlit性能优化:缓存与状态管理实战
Streamlit 是一个开源的 Python 库,专为快速构建数据科学和机器学习 Web 应用而设计。它无需前端开发经验,通过简单 API 即可创建交互式界面,适合原型开发和数据展示。通过缓存机制减少重复计算,结合 st.session_state管理会话状态,Streamlit 可以高效处理复杂交互场景,同时保持代码简洁和用户体验流畅。这种优化策略尤其适合需要频繁交互、状态保持或耗时操作的 Web 应用开发。原创 2025-04-08 15:19:03 · 1379 阅读 · 0 评论 -
LangChain 结构化输出:用 Pydantic + PydanticOutputParser 驯服 LLM 的“自由发挥”
在大型语言模型(LLM)应用中,非结构化输出是开发者面临的核心挑战:自由文本难以被程序直接处理,且易导致数据缺失或格式错误。通过代码实例解析,文章演示了两者如何协作:Pydantic 确保数据质量,PydanticOutputParser 打通从文本到模型的“最后一公里”。这种组合为 LLM 应用提供了端到端的数据管理方案,显著提升开发效率与系统鲁棒性,是构建智能管道的必备工具原创 2025-03-28 15:39:39 · 1217 阅读 · 0 评论 -
通过LangChain调用硅基流动DeepSeek API的教程
本文基于Conda的AI开发环境搭建与DeepSeek大模型调用全流程。通过创建Python 3.10虚拟环境实现项目依赖隔离,借助清华镜像源解决国内开发者安装瓶颈,成功集成LangChain框架与OpenAI兼容接口原创 2025-03-21 16:03:22 · 1087 阅读 · 0 评论 -
AI工具——Cherry Studio,搭建满血DeepSeek R1的AI对话客户端【硅基流动DeepSeek API】
本文介绍了如何利用 Cherry Studio 平台和 DeepSeek R1 模型搭建 API 客户端,并建立使用个人专属AI知识库原创 2025-02-07 12:04:39 · 8522 阅读 · 0 评论