sdut2146-最小子序列和

解决一个寻找特定子序列的问题,使子序列元素按特定规则计算的总和最小。使用动态规划的方法,通过构建动态转移方程来求解最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
给你一个长为n(10<=n<=10000)的数组,数组中的每一个数大于等于1小于等于1000000。请你找出一个长为k(100<=k<=1000)的子序列。找序列时,假如第一个数找的是数组中的第i个位置的数,那么找第二个数时只能找数组中第i个位置后的数,依次找出k个数。使得第一个数*1+第二个数*2+…+第k个数*k的值最小。

Input
有多组(小于11组)测试数据,每组第一行输入n和k(用空格隔开),第二行输入n个数(数之间用空格隔开)。

Output
请输出最小的和。

Sample Input
15 5
5 4 3 2 1 1 2 3 4 5 5 4 3 2 1

Sample Output
19

思路:
最近有种感觉就是一看见这种什么什么序列的就感觉要用动态规划写动态转移方程,还是太年轻了。这个题的方程为:
   dp[1][j]=dp[0][j-1]+a[j]*j
其中dp[0][j-1]保存的是1~j-1中的数作为第i-1个的最小值

#include <iostream>  
#include<algorithm>
#include<string.h>  
using namespace std;
const int MAX = 10200;
const int INF = 0x3f3f3f3f;

int dp[2][MAX];
int p[MAX];
int main()
{
    int m, n;
    while (cin >> m >> n) {
        memset(p, 0, sizeof(p));
        for (int i = 1; i <= m; i++)
            cin >> p[i];
        int ans;
        memset(dp, 0, sizeof(dp));
        for (int i = 1; i <= n; i++) {
            ans = INF;
            for (int j = i; j <= m; j++) {
                dp[1][j] = dp[0][j - 1] + p[j] * (i);
                dp[0][j - 1] = ans;
                ans = min(dp[1][j], ans);
            }
        }
        cout << ans << endl;
    }
    //system("pause");
    return 0;
}

/***************************************************
User name: 
Result: Accepted
Take time: 96ms
Take Memory: 340KB
Submit time: 
****************************************************/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值