此公众号会发表计算机考研(初复试信息)、夏令营等资料,方便考研人对信息的获取,节约自身查找资料的时间
目录
1. 什么是指数加权平均
指数加权平均(exponentially weighted averges),也叫指数加权移动平均,是一种常用的序列数据处理方式。
它的计算公式如下:
其中,
- θ_t:为第 t 天的实际观察值,
- V_t: 是要代替 θ_t 的估计值,也就是第 t 天的指数加权平均值,
- β: 为 V_{t-1} 的权重,是可调节的超参。( 0 < β < 1 )
例如:
我们有这样一组气温数据,图中横轴为一年中的第几天,纵轴为气温:
直接看上面的数据图会发现噪音很多,
这时,我们可以用 指数加权平均 来提取这组数据的趋势,
按照前面的公式计算:
这里先设置 β = 0.9,首先初始化 V_0 = 0,然后计算出每个 V_t:
将计算后得到的 V_t 表示出来,就得到红色线的数值:
可以看出,红色的数据比蓝色的原数据更加平滑,少了很多噪音,并且刻画了原数据的趋势。
指数加权平均,作为原数据的估计值,不仅可以 1. 抚平短期波动,起到了平滑的作用,
可以看出,红色的数据比蓝色的原数据更加平滑,少了很多噪音,并且刻画了原数据的趋势。
指数加权平均,作为原数据的