吴恩达深度学习:指数加权平均

考研人信息库

此公众号会发表计算机考研(初复试信息)、夏令营等资料,方便考研人对信息的获取,节约自身查找资料的时间

目录

 

1. 什么是指数加权平均

2.指数加权平均的优势

3. 为什么在优化算法中使用指数加权平均

4.偏差修正

5. β 如何选择?

6.参考


1. 什么是指数加权平均

指数加权平均(exponentially weighted averges),也叫指数加权移动平均,是一种常用的序列数据处理方式。

它的计算公式如下:

其中,

  • θ_t:为第 t 天的实际观察值,
  • V_t: 是要代替 θ_t 的估计值,也就是第 t 天的指数加权平均值,
  • β: 为 V_{t-1} 的权重,是可调节的超参。( 0 < β < 1 )

例如:

我们有这样一组气温数据,图中横轴为一年中的第几天,纵轴为气温:

 

直接看上面的数据图会发现噪音很多,

这时,我们可以用 指数加权平均 来提取这组数据的趋势,

按照前面的公式计算:

这里先设置 β = 0.9,首先初始化 V_0 = 0,然后计算出每个 V_t:

  

将计算后得到的 V_t 表示出来,就得到红色线的数值:

 

可以看出,红色的数据比蓝色的原数据更加平滑,少了很多噪音,并且刻画了原数据的趋势。

指数加权平均,作为原数据的估计值,不仅可以 1. 抚平短期波动,起到了平滑的作用,

 

可以看出,红色的数据比蓝色的原数据更加平滑,少了很多噪音,并且刻画了原数据的趋势。

指数加权平均,作为原数据的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值