【图像超分】论文复现:大核频率增强网络LKFN的Pytorch源码复现,跑通源码,获得与论文一致的PSNR/SSIM、Params、FLOPs、超分可视化结果,对比LKFN和LKDN,学习改进思路!

请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)

完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!

本文亮点:

  • 跑通LKFN源码(LKFN,LKFN-S),获得与论文一致的PSNR/SSIM、Params、FLOPs、超分可视化结果
  • LKFN架构从大到小拆解,从小到大实现,示意图与源码对应,注释详细;
  • 对比LKFN和LKDN,学习改进思路;


前言

论文题目:Large Kernel Frequency-enhanced Network for Efficient Single Image Super-Resolution —— 用于高效单幅图像超分辨率的大核频率增强网络

论文地址:

### 图像处理论文复现的方法资源 对于图像处理领域内的学术研究成果,尤其是涉及深度学习的应用,如图像高清化、修复以及其他类型的图像恢复任务,常会依赖于开源平台社区享的研究成果来进行复现。当考虑如何实现一篇有关图像处理论文时,可以从以下几个方面着手: #### 获取源码预训练模型 许多研究人员会在公开平台上共享他们的工作,包括但不限于GitHub仓库链接或者Google Colab笔记本文件。这些资源往往包含了完整的项目结构、必要的配置说明以及可能存在的预训练权重文件。这使得其他研究者能够快速搭建环境并运行实验。 #### 数据准备 根据具体的任务需求收集或创建合适的数据集至关重要。例如,在超分辨率重建案例中提到的小型卷积神经网络训练过程里,需要先对低辨率图片实施降采样操作以生成更低辨率版本作为输入[^1];而在水下图像增强的任务场景,则可以借助专门为此设计的规模数据集LSUI来支持模型的学习过程[^4]。 #### 实验设置评估指标 为了确保复现实验的有效性可比较性,应当严格遵循原文献描述的技术路线图,并选用一致性的评价标准。比如,在对比不同图像恢复方案的效果时,可以PSNR(峰值信噪比)、SSIM(结构相似度指数)等常用量化指标衡量输出质量差异[^2]。 #### 开发工具链的选择 Python语言及其丰富的机器学习库(TensorFlow, PyTorch等)成为当前主流开发框架之一。利用这类高效便捷的编程接口可以帮助加速原型构建速度的同时降低调试成本。此外,Jupyter Notebook形式的教学文档也非常适合初学者理解实践复杂的算法逻辑。 ```python import torch from torchvision import transforms from PIL import Image def load_image(image_path): img = Image.open(image_path).convert('RGB') transform = transforms.Compose([ transforms.ToTensor(), ]) return transform(img) # 加载一张测试用的低辨率图像 low_res_img = load_image('./test_images/low_resolution_cat.jpg') print(low_res_img.shape) ``` 上述代码片段展示了加载单张待处理图像PyTorch张量对象的过程,便于后续接入各种图像处理流水线当中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值