请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)
完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!
本文亮点:
- 跑通RFDN源码,将RFDN整合到EDSR-PyTorch中进行训练,获得PSNR/SSIM、Params、FLOPs、超分可视化结果;
- RFDN架构从大到小拆解,从小到大实现,补充CCA的实现,示意图与源码对应,注释详细;
文章目录
前言
论文题目:(ECCVW 2020 | RFDN)Residual Feature Distillation Network for Lightweight Image Super-Resolution —— 用于图像超分辨率的残差特征聚合网络
论文地址:Residual