
Pytorch深度学习图像去噪算法100例(论文精读+复现)
文章平均质量分 96
研究生科研必备!收录100例深度学习图像去噪算法模型,包括【论文精读】和【论文复现】。读懂论文,跑通源码,理论精炼解析,得到去噪结果以及指标计算;保姆级教程攻略,手把手带你读论文,复现代码,帮助你轻松入门,顺利毕业。订阅即可阅读全部文章,免费获取全部代码。置顶文章有相关说明以及文章目录!
优惠券已抵扣
余额抵扣
还需支付
¥299.90
¥399.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
十小大
985高校老师,博客之星2024Top65,研究方向为底层计算机视觉(超分、去噪等),图像拼接。偶尔也会做一些小项目,比如软件开发、网站建设等。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【图像去噪(Image Denoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)
你是否在全网苦寻【图像去噪(ImageDenoising)】的相关资料?你的目标是否是看懂【图像去噪(ImageDenoising)】的相关论文,复现代码,跑出结果,并试图创新?你是否需要发表【图像去噪(ImageDenoising)】的相关论文毕业?你是否需要做【图像去噪(ImageDenoising)】的相关项目,开发软件,研究算法,获得专利或者软著?只要是与【图像去噪(ImageDenoising)】有关的问题,那么请继续往下看。原创 2025-01-14 18:19:51 · 12810 阅读 · 36 评论 -
【图像去噪】论文复现:新手入门必看!DnCNN的Pytorch源码训练测试全流程解析!为源码做详细注释!补充DnCNN-B和DnCNN-3的模型训练和测试!附各种情况下训练好的模型权重文件!
- 以官方Pytorch源代码为基础,在DnCNN-S的基础上,增添DnCNN-B/CDnCNN-B、DnCNN-3模型训练和测试复现,代码注释非常详细,无论是科研还是应用,新手小白都能看懂,学习阅读毫无压力,去噪入门必备,适用于去噪、超分、JPEG去块任务; - 提供新增后的完整代码和训练好的模型权重文件,模型性能与论文中近似,可不训练直接测试; - 理论和源码结合,进一步加深理解算法原理、明确训练和测试流程 - 更换路径和相关参数即可训练自己的图像数据集原创 2024-08-12 11:05:45 · 12531 阅读 · 40 评论 -
【图像去噪】论文精读:Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising(DnCNN)
论文题目:Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising —— 除了高斯去噪器:深度CNN残差学习图像去噪TIP 2017!基于深度学习的图像去噪开山之作!DnCNN!由于其良好的去噪性能,图像去噪的判别模型学习最近引起了相当大的关注。在本文中,我们通过研究前馈去噪卷积神经网络 (DnCNN) 的构建来向前迈出了一步,以将非常深的架构、学习算法和正则化方法的进展纳入图像去噪。原创 2024-08-12 10:54:18 · 4026 阅读 · 0 评论 -
【图像去噪】论文精读:TOWARDS CONTROLLABLE REAL IMAGE DENOISING WITH CAMERA PARAMETERS
本文提出了一种可控的真实图像去噪框架CPADNet,利用相机参数(ISO、快门速度、F数)作为噪声水平的先验信息,通过自适应层归一化(adaLN)调节去噪强度。该方法将非线性映射的相机参数向量输入网络,实现训练时的自适应去噪和推理时的可控调节。实验在SID和SIDD数据集上进行,结果表明该方法能显著提升去噪性能,同时保持灵活性。该框架可兼容多种网络结构,为真实图像去噪提供了新的解决方案。原创 2025-07-07 19:33:41 · 455 阅读 · 0 评论 -
【图像去噪/超分】论文精读:EAMamba: Efficient All-Around Vision State Space Model for Image Restoration
本文提出EAMamba,一种基于Vision Mamba的高效图像恢复框架,通过多头选择性扫描模块(MHSSM)和全环绕扫描策略解决现有方法的计算复杂度和局部像素遗忘问题。MHSSM采用通道分组策略聚合扫描序列,避免计算开销;全环绕扫描通过多方向扫描捕获完整邻域信息。实验表明,EAMamba在超分辨率、去噪等任务中,相比现有方法减少31-89%的FLOPs,同时保持优异性能。主要贡献包括:1)高效处理多序列的MHSSM;2)解决局部遗忘的全环绕扫描策略;3)在多个恢复任务上的有效性验证。原创 2025-07-06 11:00:51 · 132 阅读 · 1 评论 -
【图像去噪】论文精读:Effective enhancement and fusion of multi-perspective features for self-supervised real i
本文提出了一种用于自监督真实图像去噪的多视角特征增强与融合方法(EEFM-BAN)。针对现有方法在处理强相关噪声时存在的结构破坏、颜色斑点和高频细节丢失等问题,作者设计了三个核心模块:1)Tri-Mask特征提取模块(TMFE)通过预定义不同形状的掩码并行提取局部细节、噪声解耦和全局结构特征;2)多像素信息增强模块(MPIE)扩展感受野并增强局部全局特征以保留纹理细节;3)交叉门控融合网络(CGFN)通过交叉连接和门控加权实现互补特征融合。在SIDD和DND数据集上的实验表明,该方法在去噪性能、纹理保留和伪原创 2025-07-05 12:01:16 · 160 阅读 · 0 评论 -
【图像去噪】论文精读:Complementary Blind-Spot Network for Self-Supervised Real Image Denoising
本文提出了一种创新的自监督真实图像去噪框架——互补盲点网络(Complementary-BSN),通过双分支架构解决传统盲点网络(BSN)的中心像素信息丢失问题。该框架包含Mask-Map分支(保留中心像素信息)和Enhanced-PD-BSN分支(采用逐块随机成形策略削弱噪声相关性),并引入重新可见损失函数优化训练过程。实验表明,该方法在PSNR、SSIM等指标上超越现有自监督方法,能有效处理真实噪声的空间相关性,保留纹理细节。核心创新点包括:1)双分支互补信息机制;2)BRP策略增强像素独立性;原创 2025-07-05 12:00:53 · 154 阅读 · 0 评论 -
【图像去噪】论文精读:Self-Calibrated Variance-Stabilizing Transformations for Real-World Image Denoising
本文提出了一种名为Noise2VST的新型图像去噪方法,该方法通过自校准的方差稳定变换(VST)将真实世界噪声转换为高斯分布,从而利用现成的高斯去噪网络实现高效去噪。与现有方法不同,Noise2VST无需特定干净/噪声图像对或额外训练,仅需输入噪声图像和预训练的高斯去噪器。该方法采用递增连续分段线性函数建模VST及其逆变换,并通过盲点策略进行自监督学习。实验表明,Noise2VST在计算成本有限的情况下,性能优于当前最先进的零样本去噪方法。这一创新为真实世界图像去噪提供了更通用且高效的解决方案,突破了对特定原创 2025-07-03 11:50:30 · 551 阅读 · 0 评论 -
【图像去噪】论文精读:A UNIFIED FRAMEWORK OF NON-LOCAL PARAMETRIC METHODS FOR IMAGE DENOISING
本文提出了一种用于图像去噪的非局部参数化方法的统一框架。作者通过最小化二次风险的两步近似方法,开发了NL-Ridge去噪算法,该算法利用相似图像块的线性组合进行去噪。研究表明,该方法能够重新解释和协调BM3D等现有最先进的非局部去噪方法。实验结果表明,虽然概念更简单,但NL-Ridge在性能上优于传统方法和部分基于深度学习的单图像去噪方法。该框架适用于高斯、泊松及混合噪声模型,为无监督图像去噪提供了新的解决方案。原创 2025-07-03 11:50:03 · 181 阅读 · 0 评论 -
【图像去噪】论文精读:Linear Combinations of Patches Are Unreasonably Effective for Single-Image Denoising
本文提出了一种基于补丁线性组合的单图像去噪方法LIChI,仅需输入噪声图像即可实现自监督去噪,无需外部训练数据。该方法通过二次风险近似迭代优化补丁组合权重,逐步提升去噪效果。实验表明,LIChI在自监督去噪领域达到最先进性能,优于基于深度学习的自监督方法,且计算效率更高(速度提升8倍)。该方法完全可解释,克服了传统非局部方法在第二阶段性能下降的问题,通过多次迭代显著减少了去噪伪影。研究还首次探讨了初始导频图像对最终结果的影响,发现其对去噪质量影响有限。原创 2025-07-02 13:51:37 · 154 阅读 · 0 评论 -
【图像去噪】论文精读:DCT2net: an interpretable shallow CNN for image denoising
论文题目:DCT2net: an interpretable shallow CNN for image denoising —— DCT2net:一种用于图像去噪的可解释浅CNNTIP 2022这项工作解决了从图像中去除噪声的问题,重点关注著名的DCT图像去噪算法。后者源于信号处理,近年来得到了很好的研究。虽然非常简单,但它仍然被用于最先进的“传统”去噪算法的关键部分,如BM3D。然而,由于几年,深度卷积神经网络 (CNN) 的表现优于传统的神经网络,使得信号处理方法的吸引力较小。在本文中,我们证明了。原创 2025-07-02 13:51:06 · 133 阅读 · 0 评论 -
【图像去噪】论文精读:Zero-shot denoising via neural compression: Theoretical and algorithmic framework(ZS-NCD)
本文提出了一种基于神经压缩的零样本图像去噪方法ZS-NCD,无需依赖训练样本或干净参考图像。该方法利用神经网络的压缩特性,直接在单个噪声图像的补丁上进行优化,通过内置熵约束避免过拟合。理论分析给出了重建误差的上界,实验证明其在高斯和泊松噪声条件下优于现有零样本去噪方法。该技术适用于医学成像等难以获取干净数据的领域,具有重要的实用价值。原创 2025-06-24 10:16:23 · 355 阅读 · 0 评论 -
【图像去噪】论文精读:Pseudo-Siamese Blind-Spot Transformers for Self-Supervised Real-World Denoising
本文提出了一种基于伪连体盲点变换器(SelfFormer)的自监督真实世界图像去噪方法。该方法通过方向自注意力(DSA)模块构建复杂盲点结构,结合连体架构实现相互学习,有效解决真实图像中像素相关噪声问题。SelfFormer在SIDD和DND数据集上的实验表明,其性能优于现有自监督和干净图像方法,为真实世界去噪提供了新思路。主要创新包括:1)利用半平面网格自注意力的DSA模块;2)采用伪连体架构减轻受限注意力的负面影响。该方法无需成对训练数据,仅需单次拍摄的噪声图像即可实现高效去噪。原创 2025-06-24 10:15:43 · 266 阅读 · 0 评论 -
【图像去噪】论文精读:Realistic Noise Synthesis with Diffusion Models(RNSD)
本文提出了一种基于扩散模型的真实噪声合成方法RNSD,用于生成高质量的训练数据以提升图像去噪性能。针对现有噪声合成技术难以准确建模复杂噪声分布的问题,RNSD通过三个关键创新实现了突破:1) 时间感知相机条件仿射调制(TCCAM)模块,将相机设置编码为条件信息,控制不同场景下的噪声分布;2) 多尺度内容感知模块(MCAM),在多个频率上生成具有空间相关性的结构噪声;3) 深度图像先验采样(DIPS)技术,将1000步采样过程压缩至5步,精度损失仅4%,显著提升效率。原创 2025-06-23 10:44:53 · 988 阅读 · 0 评论 -
【图像去噪】论文精读:YOND: Practical Blind Raw Image Denoising Free from Camera-Specific Data Dependency
摘要: YOND提出了一种无需依赖相机特定数据的盲原始图像去噪方法,通过粗到细噪声估计(CNE)、期望匹配方差稳定变换(EM-VST)和SNR引导去噪器(SNR-Net)三大模块实现泛化性。仅需在合成数据上训练,即可有效处理未知相机的噪声图像。实验表明,YOND在公共数据集和真实场景中均表现优异,且支持自适应调整与手动微调。该方法突破了传统去噪对特定相机数据的依赖,为盲去噪提供了实用解决方案。原创 2025-06-23 10:44:05 · 172 阅读 · 0 评论 -
【图像去噪】论文精读:SCORE-BASED SELF-SUPERVISED MRI DENOISING
本文提出了一种基于分数的自监督MRI图像去噪方法Corruption2Self (C2S),通过广义去噪分数匹配(GDSM)损失直接从噪声数据中学习去噪模型,无需高信噪比标签。C2S引入噪声水平重新参数化以稳定训练,并采用细节细化模块平衡去噪与特征保留。实验表明,该方法在M4Raw和fastMRI数据集上达到自监督方法中的最先进性能,甚至可与监督方法媲美。该方法还支持多对比度MRI数据融合,为临床MRI去噪提供了实用解决方案。原创 2025-06-22 16:31:30 · 68 阅读 · 0 评论 -
【图像去噪】论文精读:InstructIR: High-Quality Image Restoration Following Human Instructions
本文提出了一种创新的图像恢复方法InstructIR,首次利用自然语言指令指导多任务图像恢复。该方法通过文本提示实现对去噪、去雨、去模糊、去雾和低光增强等任务的统一处理,大幅提升了外行用户的可用性。研究人员使用GPT-4生成了超过10,000条多样化的恢复指令,并构建了高质量的配对训练数据集。模型采用轻量化的BGE-micro-v2文本编码器,并创新性地加入投影层和意图分类损失来优化指令理解。原创 2025-06-22 16:30:41 · 87 阅读 · 0 评论 -
【图像去噪】论文精读:ControlMambaIR: Conditional Controls with State-Space Model for Image Restoration
ControlMambaIR:基于状态空间模型与扩散条件控制的图像恢复方法 本文提出ControlMambaIR,一种创新的图像恢复框架,通过整合Mamba状态空间模型与扩散模型,实现对图像去噪、去模糊等任务的精细化控制。该模型克服了传统CNN感受野受限和Transformer计算复杂度高的缺点,同时解决了扩散模型在图像恢复中控制不足的问题。关键创新在于: 混合架构设计:结合扩散模型的生成能力与Mamba网络的高效细粒度控制 直接噪声预测策略:在扩散过程中实现噪声抑制与细节保留的平衡原创 2025-06-21 13:14:48 · 113 阅读 · 0 评论 -
【图像去噪】论文精读:Noise2NoiseFlow: Realistic Camera Noise Modeling without Clean Images
本文提出了一种无需干净图像即可实现真实相机噪声建模的新方法Noise2NoiseFlow。该方法通过联合训练噪声模型和去噪器,仅需噪声图像对即可学习准确的噪声分布。实验表明,该方法在噪声合成和密度估计方面优于传统信号处理模型,与有监督模型性能相当,并能显著提升降噪效果。该工作解决了真实场景中难以获取干净图像的难题,为噪声建模和图像去噪提供了新的解决方案。原创 2025-06-21 13:14:05 · 87 阅读 · 0 评论 -
【图像去噪】论文精读:Towards General Low-Light Raw Noise Synthesis and Modeling(LRD)
本文提出了一种创新的低光原始图像噪声合成与建模方法。针对现有基于物理的噪声模型难以准确描述弱光条件下复杂多变的信号无关噪声问题,作者提出将噪声合成过程分为信号相关和信号无关两部分分别处理:采用基于物理的泊松分布模型合成信号相关噪声,利用生成对抗网络(GAN)学习信号无关噪声。研究提出了一种新型多尺度鉴别器——傅里叶变换鉴别器(FTD)来准确区分噪声分布,并构建了低光原始去噪(LRD)数据集用于模型训练和测试。 实验结果表明,该方法能够生成与真实噪声高度相似的合成噪声图像,且在多个传感器上的去噪性能优于现有方原创 2025-06-20 22:52:47 · 52 阅读 · 0 评论 -
【图像去噪】论文精读:Rethinking Noise Synthesis and Modeling in Raw Denoising
本文提出了一种新的原始图像去噪噪声合成方法。针对现有基于物理统计和深度学习的噪声建模方法难以准确捕捉所有噪声源的问题,作者提出直接从真实噪声中采样来合成噪声。该方法将噪声分解为信号相关和信号无关两部分:信号相关噪声通过校准泊松分布生成,信号无关噪声则从暗帧数据库采样获得。为提高采样准确性,作者提出了模式对齐补丁采样(保持空间相关性)和高位噪声重建(恢复连续分布)两种关键技术。实验表明,该方法在SIDD和ELD数据集上优于现有技术,并具有更好的跨传感器泛化能力。研究还发现,此前基于深度学习的噪声建模方法由于噪原创 2025-06-20 22:52:21 · 43 阅读 · 0 评论 -
【图像去噪】论文精读:A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising(ELD)
摘要:本文提出了一种基于物理的极端微光原始图像去噪噪声模型,通过精确建模CMOS传感器噪声源(如光子散粒噪声、电路噪声等),显著提升了合成数据与真实噪声的匹配度。针对现有异方差高斯模型的不足,作者引入Tukey lambda分布更准确地表征噪声特性,并提出相机噪声参数校准方法。实验通过构建涵盖多品牌相机的ELD数据集验证了模型的有效性,结果表明仅用合成数据训练的网络可达到与真实数据训练相当的性能。该研究为低光去噪提供了更可靠的噪声建模方案,解决了真实数据采集成本高的问题。原创 2025-06-19 15:09:23 · 70 阅读 · 0 评论 -
【图像去噪】论文精读:Estimating Fine-Grained Noise Model via Contrastive Learning
本文提出了一种基于对比学习的细粒度噪声模型估计方法(CVPR 2022),通过仅使用测试图像即可估计相机特定噪声参数,无需依赖校准帧或干净/噪声配对数据。该方法创新性地结合了噪声建模与估计技术:首先通过对比学习框架从单幅图像中分离不同噪声分量,精确估计细粒度噪声参数;然后利用这些参数建模传感器噪声分布,合成逼真的训练数据。实验表明,该管道生成的噪声数据可使深度去噪器达到与依赖真实校准数据的现有方法相当的性能,且能泛化至未知相机传感器。主要贡献包括:1) 首个仅需测试图像即可估计物理噪声模型的框架;原创 2025-06-19 15:08:54 · 97 阅读 · 0 评论 -
【图像去噪】论文精读:Noise Flow: Noise Modeling with Conditional Normalizing Flows
提出了一种基于归一化流的新型噪声建模方法Noise Flow,用于更准确地模拟真实图像噪声。传统噪声模型如高斯白噪声和信号相关噪声模型难以捕捉真实传感器噪声的复杂性。该研究将参数化噪声模型与归一化流网络相结合,构建了一个包含不足2500参数的紧凑模型,能表示多相机和增益条件下的噪声分布。实验表明,Noise Flow在相机校准噪声水平函数上比现有模型提升0.42 nats/pixel,采样噪声可能性提高52%。通过条件归一化流架构,该方法首次实现了超越简单参数模型的深度数据驱动噪声建模,在去噪任务中显著提升原创 2025-06-18 16:02:40 · 64 阅读 · 0 评论 -
【图像去噪】论文精读:Learning Camera-Aware Noise Models
本文提出了一种数据驱动的相机感知噪声建模方法CA-NoiseGAN,通过对抗生成网络从真实噪声中学习相机特定的噪声特征。该方法包含噪声生成网络和相机编码网络:噪声生成器利用泊松-高斯模型初始化噪声,并通过残差学习生成信号相关噪声;相机编码器提取不同传感器的噪声特征。创新性地设计了特征匹配损失提升噪声模式真实性。实验表明,该方法在噪声建模和去噪性能上优于传统统计模型和其他学习方案。单个模型可适配多款相机,生成符合各自噪声特性的合成数据。该工作为复杂真实噪声建模提供了有效解决方案。原创 2025-06-18 16:02:01 · 81 阅读 · 0 评论 -
【图像去噪】论文精读:All-Optical Nonlinear Diffractive Deep Network for Ultrafast Image Denoising(N3DNet)
本文提出了一种创新的全光学非线性差分深度网络N3DNet,用于超高速图像去噪。该方法将图像编码与预去噪模块集成到衍射神经网络中,并引入新型相位指数线性激活函数提升非线性建模能力。通过强化学习算法RA-DQN优化网络后,采用3D打印技术构建实际光学系统。研究还发布了首个模式图像去噪基准数据集MIDD,包含12万对真实光纤通信场景的噪声/无噪声图像。实验表明,N3DNet在PSNR等指标上比现有光学方法提升9.15dB,处理速度比电子芯片方法快3800倍,功耗仅为纳焦级。该成果为高速图像处理提供了新的光学计算范原创 2025-06-16 17:43:29 · 551 阅读 · 0 评论 -
【图像去噪】论文精读:Zero-Shot Blind-spot Image Denoising via Implicit Neural Sampling
论文题目:Zero-Shot Blind-spot Image Denoising via Implicit Neural Sampling —— 基于隐式神经采样的零样本盲点图像去噪CVPR 2025盲点原理是零样本图像去噪中广泛使用的工具,但在表现出强局部相关性的真实世界噪声方面面临挑战。现有的方法侧重于降低噪声相关性,这也削弱了准确估计缺失像素所需的像素相关性。本文首先对噪声相关性和像素相关性如何影响线性盲点去噪器的统计风险进行了严格分析。然后,我们提出使用。原创 2025-06-16 17:42:52 · 1094 阅读 · 0 评论 -
【图像去噪】论文精读:Tell Me What You See: Text-Guided Real-World Image Denoising
论文题目:Tell Me What You See: Text-Guided Real-World Image Denoising —— 告诉我你看到了什么:文本引导的真实世界图像去噪arXiv 2025!从噪声传感器测量中进行图像重建具有挑战性,为此提出了许多方法。然而,大多数方法侧重于在对场景噪声统计进行建模时学习稳健的自然图像先验。在极弱光条件下,这些方法通常仍然不足。需要额外的信息,例如多个捕获,或者,如此处所建议的,场景描述。作为替代方案,我们建议使用基于文本的场景描述。原创 2025-06-09 11:05:49 · 204 阅读 · 0 评论 -
【图像去噪】论文精读:Rotation-Equivariant Self-Supervised Method in Image Denoising(AdaReNet)
论文题目:Rotation-Equivariant Self-Supervised Method in Image Denoising —— 图像去噪中的旋转等变自监督方法CVPR 2025!近年来,自监督图像去噪方法引起了广泛的研究关注,因为这种方法减少了对大型训练数据集的要求。与监督方法相比,自监督方法更多地依赖于深度网络本身中嵌入的先验。因此,大多数自监督方法都是用卷积神经网络 (CNN) 架构设计的,该架构很好地捕捉了最重要的图像先验之一、平移等变先验。受引入平移等方差取得的巨大成功的启发。原创 2025-06-09 11:05:19 · 1692 阅读 · 0 评论 -
【图像超分/去噪】论文精读:Cross Aggregation Transformer for Image Restoration(CAT)
本文提出了一种基于Transformer的图像恢复模型Cross Aggregation Transformer (CAT),通过引入矩形窗口自注意力(Rwin-SA)、轴向移位操作和局部互补模块(LCM)来解决现有方法在计算复杂度和窗口间交互方面的局限性。Rwin-SA利用不同头部的水平和垂直矩形窗口并行扩展注意力区域,轴向移位促进窗口间交互,LCM补充局部信息。实验表明,CAT在超分辨率、去噪等任务上性能优越。原创 2025-05-29 13:48:25 · 135 阅读 · 0 评论 -
【图像超分/去噪】论文复现:交叉聚合Transformer!CAT的Pytorch源码复现,跑通超分和去噪源码,获得指标、模型复杂度、结果可视化,架构拆解与源码对应,注释详细!
本文详细介绍了图像恢复模型CAT(Cross Aggregation Transformer)的代码实现与测试流程,包含超分辨率重建和真实图像去噪两个任务。重点分析了CAT的矩形窗口自注意力(Rectangle-Window SA)和轴向偏移操作(Axial-Shift)结构实现。本文通过详细的代码注释和配置说明,帮助研究者快速复现CAT模型的超分和去噪结果,验证论文报告的性能指标。原创 2025-05-29 13:51:30 · 127 阅读 · 0 评论 -
【高效科研】提升科研做图效率!实用的局部放大图工具,可多图实时查看局部放大区域对比,点击鼠标即可同时裁剪并保存局部放大区域!
本文介绍了一个用于图像去噪和超分辨率重建的可视化工具,旨在解决多模型结果对比时的痛点。该工具允许用户在同一屏幕上查看多张图像的局部放大区域,并保存带有红色矩形框的原图及各模型的局部放大结果。使用Python和tkinter开发,用户可通过鼠标选择感兴趣区域,快速生成对比图,并利用PPT进行排版。工具支持自定义放大倍数、区域尺寸和矩形框线宽,适用于任何相同图像大小、不同方法之间的对比任务。代码可通过指定链接下载,订阅相关专栏后可免费获取工具。原创 2025-05-16 11:13:01 · 815 阅读 · 5 评论 -
【图像去噪】前沿资讯:第十届NTIRE 2025图像去噪挑战报告,一大批CVPRW论文即将来袭!
The Tenth NTIRE 2025 Image Denoising Challenge是第十届CVPR NTIRE (New Trends in Image Restoration and Enhancement) Workshop研讨会比赛之一 —— 图像去噪挑战赛,旨在促进去噪领域的发展,对不同的去噪技术进行公平比较,促成潜在的合作关系。加噪声白噪(AWGN),σ=50。计算效率和模型复杂度不参与评判。也就是说,只看涨点,无疑又是一场军备竞赛。核心思想:偏差调优。原创 2025-04-21 16:31:59 · 1249 阅读 · 0 评论 -
【图像去噪】耗时999999个小时!一次看个够!专栏内100个去噪算法大合集,理论速览,核心精炼!内含每篇文章的参考文献Bib格式,论文写作必备!随取随用!(持续更新中)
图像去噪论文大合集,化繁为简,精炼论文,蹲坑食用,效果更佳,速记速查,论文不麻原创 2025-03-17 10:49:39 · 1973 阅读 · 0 评论 -
【图像去噪/超分】论文精读:A Comparative Study of Image Restoration Networks for General Backbone Network Design
本文探讨了图像恢复网络在不同任务中的通用性问题,提出了一个通用的骨干网络X-Restormer。现有的图像恢复网络在特定任务上表现出色,但在其他任务中表现不佳,表明其任务通用性有限。通过对五个代表性网络(MPRNet、Uformer、SwinIR、Restormer和NAFNet)在五个经典图像恢复任务(超分辨率、去噪、去模糊、去雨和去雾)中的比较研究,作者分析了不同任务的特征和网络性能差异的原因。基于此,作者提出了X-Restormer,通过增强Restormer的空间映射能力,显著提升了其在多个任务中的原创 2025-05-14 10:46:12 · 202 阅读 · 0 评论 -
【图像去噪】论文精读:Multi-View Learning with Context-Guided Receptance for Image Denoising(CRWKV)
论文题目:Multi-View Learning with Context-Guided Receptance for Image Denoising —— 具有上下文引导感知的图像去噪多视图学习IJCAI 2025!将RWKV用于图像去噪。图像去噪在摄影和自动驾驶等低级视觉应用中是必不可少的。现有方法难以区分真实场景中的复杂噪声模式,并且由于依赖于基于 Transformer 的模型而消耗大量的计算资源。在这项工作中,提出了上下文引导的感知加权键值(CRWKV)模型。原创 2025-05-07 10:05:00 · 228 阅读 · 0 评论 -
【高效科研】气泡图绘制 | 将各SOTA方法的PSNR vs. FLOPs vs. Parameters vs. Runtime vs. Memory可视化,对比性能与模型复杂度
CFSR:FMEN:SPAN:本文目的为使用python绘制类似的气泡图。原创 2025-05-06 14:26:30 · 472 阅读 · 0 评论 -
【图像去噪】论文精读:Noise Modeling in One Hour: Minimizing Preparation Efforts for Self-supervised Low-Light
论文题目:Noise Modeling in One Hour: Minimizing Preparation Efforts for Self-supervised Low-Light RAW Image Denoising —— 一小时内的噪声建模:最大限度地减少自监督低光RAW图像去噪的准备工作CVPR 2025!索尼研究院出品!噪声合成是解决数据驱动的低光RAW图像去噪中数据短缺问题的一种有前景的解决方案。原创 2025-05-05 11:38:56 · 1249 阅读 · 0 评论 -
【图像去噪/超分】论文复现:底层视觉可解释性通用方法!因果归因算法CEM的Pytorch源码复现,图文手把手教程,跑通CEM源码,获得LAM可视化结果和正负范围,使用CEM可视化自己的模型!
论文题目:Interpreting Low-level Vision Models with Causal Effect Maps —— 用因果效应图解释低级视觉模型【去噪/超分】论文精读:Interpreting Low-level Vision Models with Causal Effect Maps(CEM)先看LAM复现,代码结构类似。本文目的:获取CEM结果,正负向因果效应占比。对于同一个区域不同模型而言,正向和负向越大(负的越少正的越多),模型越好。原创 2025-04-30 13:35:59 · 539 阅读 · 6 评论 -
【图像去噪/超分】论文精读:Interpreting Low-level Vision Models with Causal Effect Maps(CEM)
论文题目:Interpreting Low-level Vision Models with Causal Effect Maps —— 用因果效应图解释低级视觉模型TPAMI 2025!深度神经网络显着提高了低级视觉任务的性能,但也增加了可解释性的难度。对深度模型的深入理解有利于网络设计和实际可靠性。为了应对这一挑战,我们引入了因果理论来解释低级视觉模型,并提出了一种称为因果效应图 (CEM)的模型/任务不可知方法。使用 CEM,我们可以可视化和量化正负效应的输入-输出关系。原创 2025-04-30 13:35:26 · 248 阅读 · 0 评论