
纯程序员通往金融科技之路
学习笔记
Line_Walker
微信公众号:芥子观须弥
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
贷款违约预测 Task05:模型融合
5.1学习目标将之前建模调参的结果进行模型融合。 尝试多种融合方案,提交融合结果。(模型融合一般用于A榜比赛的尾声和B榜比赛的全程)5.2内容介绍模型融合是比赛后期上分的重要手段,特别是多人组队学习的比赛中,将不同队友的模型进行融合,可能会收获意想不到的效果哦,往往模型相差越大且模型表现都不错的前提下,模型融合后结果会有大幅提升,以下是模型融合的方式。平均 简单平均 加权平均 投票 简单投票法 加权投票法 综合 排序融合 log融合 stacking 构原创 2020-09-27 23:53:11 · 437 阅读 · 0 评论 -
贷款违约预测task3:特征工程
1. 特征工程概述特征工程,是指用一系列工程化的方式从原始数据中筛选出更好的数据特征,以提升模型的训练效果。业内有一句广为流传的话是:数据和特征决定了机器学习的上限,而模型和算法是在逼近这个上限而已。由此可见,好的数据和特征是模型和算法发挥更大的作用的前提。特征工程通常包括数据预处理、特征选择、降维等环节。2. 内容首先导入相关包import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport sea原创 2020-09-22 00:40:44 · 397 阅读 · 0 评论 -
贷款违约预测Task01:赛题理解
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar原创 2020-09-16 10:27:56 · 321 阅读 · 0 评论 -
金融时序预测Task05:建模预测
一、特征工程1.重要性数据挖掘二八法则,80%选取特征,20%模型融合。特征越好,模型的性能越出色,构建的模型越简单,模型的灵活性越强。2.概念基于数据分析与探索提取潜在有价值的特征。数据分析与探索-提取特征-分析与因变量关联以筛选有价值特征-特征组合。3.几大步骤(数据分析与探索-观察数据特点以剔除无用特征-基于相关性分析与独立性分析剔除弱关联特征)其一特征提取与特征组合:1)箱型图分析2)点线图分析3)离线型特征重要性:可用于设计规则,易于模型拟合,xgboost,lightgbm,c原创 2020-08-24 23:54:00 · 732 阅读 · 0 评论 -
03.时间序列规则
时间序列规则def isValid(s: 'str') -> 'bool': return s#这里的参数:‘注解内容’ 和 箭头‘注解内容’的用法是为标注了参数和返回值的类型,使代码更具有阅读性def isValid(s): return s#效果上其实没有区别支付数据、客流量数据、交通数据等时间序列通常都具有明显的周期性周期性是核心确定周期(一周、一月)确定组成一个周期的元素(周1-周日、1号-31号)结合STL分解观察周期变化缺点:不考虑节假原创 2020-08-22 23:37:55 · 420 阅读 · 0 评论 -
数据挖掘实践(资金流入流出预测) Task1
1. 赛题理解1.1 目标使用已有数据,精确预测在2014 年 9 月每天一行的申购总额和赎回总额。1.2 评估方法赛题数据提供了2013年7月-2014年8月每天的申购赎回数据,28041位用户,共有2840421条记录。计算所有用户在测试集上每天的申购及赎回总额与实际情况总额的误差为评估方法,最后公布总积分 = 申购预测得分 *45%+ 赎回预测得分 *55% 。2. EDAimport pandas as pdimport numpy as npimport warnings im原创 2020-08-20 23:56:04 · 443 阅读 · 0 评论