本文的第一作者来自剑桥大学计算机学院。
文本提出了图形注意网络(GATs),这是一种新型的神经网络结构,它对图结构的数据进行操作,利用masked self-attention来解决先前方法的缺点。通过堆叠不同的GAT层,使得节点能够关注它们的邻域特性。我们可以(隐式地)为一个邻域内的不同节点指定不同的权重,而不需要任何昂贵的矩阵运算(比如求逆),也不需要预先了解图的结构。
GRAPH ATTENTIONAL LAYER
输入,每个结点的特征矩阵,N*F:
输出,新的结点的特征。新的特征使用注意力机制聚合了邻域内结点的信息:
为了将输入的特征转化为更高级别的特征,因此首先学习一个由共享参数矩计算的可学习线性变换。
之后,采用self-attention计算结点对(j是结点i的一阶邻居结点