图神经网络论文阅读(六) GRAPH ATTENTION NETWORKS,ICLR2018

本文介绍了GRAPH ATTENTION NETWORKS (GATs),它使用mask self-attention解决图结构数据处理的问题,允许节点关注邻域特性。通过多头注意力机制,GATs无需矩阵运算或预先了解图结构,提高了模型的效率和解释性。在Transductive和Inductive学习任务上,GATs与其他图卷积网络进行了比较,并显示了优秀的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文的第一作者来自剑桥大学计算机学院。
文本提出了图形注意网络(GATs),这是一种新型的神经网络结构,它对图结构的数据进行操作,利用masked self-attention来解决先前方法的缺点。通过堆叠不同的GAT层,使得节点能够关注它们的邻域特性。我们可以(隐式地)为一个邻域内的不同节点指定不同的权重,而不需要任何昂贵的矩阵运算(比如求逆),也不需要预先了解图的结构。

GRAPH ATTENTIONAL LAYER

输入,每个结点的特征矩阵,N*F:
在这里插入图片描述
输出,新的结点的特征。新的特征使用注意力机制聚合了邻域内结点的信息:
在这里插入图片描述
为了将输入的特征转化为更高级别的特征,因此首先学习一个由共享参数矩在这里插入图片描述计算的可学习线性变换。
之后,采用self-attention计算结点对(j是结点i的一阶邻居结点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五月的echo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值