一、亮点
本文的主要亮点是多场景协同学习用户表示的实现过程。本文提出了一个基于多场景任务的用户表示学习方法,可以得到更有效的个性化表示。用户的各种行为(点击、加标签、购买等)通过将内容、行为和上线文信息使用LSTM和attention构造,多个任务并行训练,共同更新用户表示。生成的用户表示还可以迁移到其他应用场景。
二、系统架构
三、模型结构
用户行为序列作为输入送入embedding层,上层加入LSTM和attention之后,得到用户的表示向量。可以看出来,用户的表示向量是用128维的用户特征与128维的用户行为拼接得到256维的用户向量表示。
3.1 Input & Behavior Embedding
输入包括一系列的行为 x = x 1 , x 2 , . . . , x N x = {x_1,x_2,...,x_N } x=x1,x2,...,