【推荐算法论文阅读】Perceive Your Users in Depth: Learning Universal User Representations from Multiple EC

一、亮点

本文的主要亮点是多场景协同学习用户表示的实现过程。本文提出了一个基于多场景任务的用户表示学习方法,可以得到更有效的个性化表示。用户的各种行为(点击、加标签、购买等)通过将内容、行为和上线文信息使用LSTM和attention构造,多个任务并行训练,共同更新用户表示。生成的用户表示还可以迁移到其他应用场景。

二、系统架构

请添加图片描述

三、模型结构

请添加图片描述
用户行为序列作为输入送入embedding层,上层加入LSTM和attention之后,得到用户的表示向量。可以看出来,用户的表示向量是用128维的用户特征与128维的用户行为拼接得到256维的用户向量表示。

3.1 Input & Behavior Embedding

输入包括一系列的行为 x = x 1 , x 2 , . . . , x N x = {x_1,x_2,...,x_N } x=x1,x2,...,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值