【多模态论文阅读】HADAMARD PRODUCT FOR LOW-RANK BILINEAR POOLING

本文探讨了如何利用Hadamard积进行低秩双线性池化,以实现多模态学习的高效注意力机制。除了基本的MLB方法,还提出了一系列改进,包括引入偏置项、非线性激活、短路连接和注意力机制。这些变体增强了模型的表达能力和适应性,为深度神经网络的池化操作提供了新的思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、亮点

本文提出了使用 Hadamard 积的低秩双线性池化,以实现多模态学习的有效注意机制。

除了基础的多模态低秩双线性池化MLB,本文还提出了很多变体,如:

  1. 添加偏置项
  2. 添加非线性
  3. 添加受深度残差学习启发的shortcut connections
  4. 添加attention机制

二、MLB推导

在这里插入图片描述
所以综上所述:

多模态低秩双线性模型可以使用两个不带偏置项(也可以带)的线性映射来实现,用于embedding两个输入向量,Hadamard 乘积以乘法方式学习多模态联合表示,最终使用一个带偏置项的线性映射将多模态联合表示投影到给定输出维度的输出向量。 然后,我们使用这种结构作为深度神经网络的池化方法。

接下来我们基于受神经网络研究启发的模型讨论低秩双线性池的可能变化。

2.1 FULL MODEL——添加偏置项

请添加图片描述

2.2 非线性激活

请添加图片描述

2.3 SHORTCUT CONNECTION

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值