PCL 统计滤波器【2024最新版】

264 篇文章 ¥19.90 ¥99.00
本文详细介绍了PCL库中的统计滤波器,用于去除点云数据中的离群点。通过计算每个点到最近k个点的平均距离,依据高斯分布原理设置距离阈值,剔除非有效点。内容包括算法概述、计算过程、主要函数,并提供代码实现与CloudCompare软件的操作指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

本文由CSDN点云侠原创,原文链接,首发于:2020年6月8日。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的抄袭狗。

博客长期更新,本文最近一次更新时间为:2024年8月21日。

一、统计滤波

1、算法概述

  激光扫描通常会产生密度不均匀的点云数据集,另外测量中的误差也会产生稀疏的离群点,此时,估计局部点云特征(例如采样点处法向量或曲率变化率)时运算复杂,这会导致错误的数值,反过来就会导致点云配准等后期的处理失败。
  统计滤波器用于去除明显离群点,离群点往往由测量噪声引入,其特征是在空间中分布稀疏,可以理解为:每个点都表达一定信息量,某个区域点越密集则可能信息量越大。噪声信息属于无用信息,信息量较小。所以离群点表达的信息可以忽略不计。
  考虑到离群点的特征,则可以定义某处点云小于某个密度,既点云无效。计算每个点到其最近的

### 统计滤波原理 统计滤波(Statistical Outlier Removal, SOR)是一种用于点云数据去噪的方法。此方法通过分析点云中每个点与其邻域内其他点之间的距离来识别并移除离群点。具体来说,对于每一个点,计算它到其k近邻的平均距离,并设定一个全局阈值。当某一点的实际平均距离超过该阈值时,则认为这一点可能是异常点或噪声点而予以删除[^2]。 为了更精确地控制哪些点应被视为潜在的噪音源,在实际操作过程中还可以引入额外参数如标准偏差因子,使得只有那些显著偏离正常范围的数据才会被标记为候选去除对象。这种机制有助于保护目标物体表面细节不因过度过滤而受损[^3]。 ### 实现方法概述 在实现上,统计滤波主要包括以下几个步骤: 1. **邻域搜索**:针对每一点选择一定数量最近邻构成局部区域; 2. **描述符计算**:基于选定区域内所有样本点的位置信息求取诸如均值、方差之类的统计数据作为衡量依据; 3. **统计比较**:利用上述得到的结果设置合理的判别准则,区分有效成分同干扰因素之间界限; 4. **决策与更新**:按照既定规则做出保留还是舍弃的选择动作并对剩余部分实施必要的优化措施; 5. **迭代处理**:重复执行以上各阶段直至满足特定收敛条件为止。 ```cpp pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor; sor.setInputCloud (cloud); sor.setMeanK (50); // 设置考虑多少个临近点 sor.setStddevMulThresh (1.0); // 设定倍数的标准差作为阈值 sor.filter (*cloud_filtered); ``` ### 应用场景 统计滤波广泛应用于各种三维重建项目当中,尤其是在涉及LiDAR扫描仪获取的大规模室外环境建模任务里表现尤为突出。由于自然环境中不可避免存在树木摇晃造成的瞬态遮挡现象以及传感器本身固有的随机误差影响,因此采用此类技术能够有效提升最终成果的质量水平。此外,在机器人导航领域同样发挥着重要作用——帮助清理来自地面反射杂散光所引起的虚假障碍物提示等问题。
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值