PCL 随机采样【2025最新版】

264 篇文章 ¥19.90 ¥99.00
本文介绍了PCL库中的随机采样算法,基于Faster Methods for Random Sampling原理,通过pcl::RandomSample类进行实现。文章包括算法原理、代码实现和结果展示,展示了在CloudCompare软件中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

本文由CSDN点云侠原创,原文链接。博客长期更新,本文最近一次更新时间为:2025年7月7日。

一、算法原理

1、实现过程

  随机法点云降采样(Random downsampling)是通过生成随机数种子对点云索引序号进行筛选从而获得精简点云的非确定性方法。随机法降采样是点云降采样中最简单、最快速的方法,但在点云去噪方法中也是存在问题最多的方法,由于该算法不是按照空间拓扑关系进行点云降采样,采样后数据在空间上容易产生密度分布不均的效果。
  随机降采样通过采样率作为阈值控制点云的采样效率。设原始输入点云数量为 N + 1 N +1

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值