PCL 线性最小二乘法优化的点到面ICP精配准算法【2024最新版】

264 篇文章 ¥19.90 ¥99.00
本文介绍了点到面ICP算法的线性最小二乘优化原理,通过重新缩放和移动点云提高计算稳定性,并讨论了在旋转角度小的情况下,如何使用线性逼近加速计算。Low等人证明了这种方法在速度和精度上优于点到点的ICP。文章还提及了算法的代码实现和结果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


博客长期更新,本文最近一次更新时间为:2024年10月24日。完善了算法理论介绍部分的计算公式。

一、算法原理

1、算法概述

  点到平面度量通常使用标准非线性最小二乘法来求解,例如Levenberg-Marquardt。点到平面ICP算法的每次迭代通常比点到点算法慢,但收敛速度明显更快。两个点云之间的相对旋转小于30°,在旋转矩阵中用 θ θ θ替换 s i n θ sinθ

点到面ICP(Iterative Closest Point)是一种常用的点云方法,用于将一个点云与一个面模型进行对齐。而PCL(Point Cloud Library)是一个开源的点云处理库,提供了ICP算法的实现。 ICP通过迭代优化的方式,通过找到点云上每个点与面模型上最近点之间的最小平方距离的方式来实现点云与面模型的。具体而言,ICP的过程如下: 1. 初始化:首先,需要提供一个初始的变换矩阵,用来将点云变换到与面模型相对应的坐标系中。 2. 最近点匹配:对于点云中的每个点,根据当前的变换矩阵,寻找与之最近的面模型上的点。 3. 估计变换:通过最近点匹配,可以得到一组对应点对(点云上的点与面模型上的点),然后使用线性最小二乘法来估计出一个新的变换矩阵。 4. 更新变换:将新的变换矩阵与之前的变换矩阵进行组合,并更新为当前的变换矩阵。 5. 终止判断:如果满足了停止则(例如变换矩阵的变化小于某个阈值),则结束迭代;否则,返回第2步继续迭代。 在线性最小二乘优化中,通过最小化点到面之间的距离的平方和,来求解最优的变换矩阵。这涉及到对距离的求导和构建雅可比矩阵的过程,最终通过求解线性方程组来获得最小二乘优化的结果。 总的来说,pcl中的ICP算法通过点云上点与面模型上最近点之间的最小平方距离来实现点云到面模型的。而通过线性最小二乘优化,可以获得最优的变换矩阵,使得点云与面模型对齐。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值