本文由CSDN点云侠原创,原文链接,首发于:2021年2月27日。抄袭狗把自己当个狗!!!。
博客长期更新,本文最新更新时间为:2024年10月19日。代码在PCL1.14.1中测试通过,新增2024年本人对该算法的最新理解。
一、 方法介绍
1、实现原理
通过构建的KD-tree实现最近邻算法,对点云进行近邻搜索。以欧氏距离为判断标准,剔除欧氏距离大于阈值的匹配点。具体步骤如下。
- 寻找目标点的叶节点:从根节点递归向下搜索KD-tree,如果目标点当前维度的坐标小于切分点坐标,则转移到左子节点;反之,转移到右子节点。进入叶节点后,将该叶节点内与待配准点之间距离最小的点作为当前最近点。
- 递归向上回溯:如果该节点保存的实例点比当前最近点距离目标点更近,则更新当前最近点;反之,检查另一子节点区域。如果该区域与以目标点为球心