PCL KD树的使用【2024最新版】

264 篇文章 ¥19.90 ¥99.00
本文介绍了PCL库中KD树的原理和使用,包括建立KD树的过程、近邻搜索方法,并详细讲解了KdTree类的函数。通过实例展示了K近邻搜索、半径搜索及混合搜索的代码实现,并提供了可视化结果。此外,文章还列举了相关参考文献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


博客长期更新,本文最近一次更新时间为:2024年12月9日。① 优化代码结构和原理介绍;② 代码在PCL1.14.1上运行成功。

一、原理介绍

1、建立KD树

  kd-tree 数据结构是计算机科学中用来组织具有k维空间中若干点的数据结构。它是一个具有其他约束的二进位搜索树。K-d树对于范围搜索和最近邻搜索是非常有用的。为了我们的目的,我们通常只处理三维点云,所以我们所有的k-d树都是三维的。K-d树的每一层都使用垂直于相应轴的超平面,沿着特定的维度分割所有的子级。在树的根部,所有的子节点都将根据第一维(即,如果第一维坐标小于根,它将在左子树中,如果它大于根,那么它将明显地在右子树中)分割。树中的每一层都在下一个维度上划分,一旦所有其他维度都被耗尽,就返回到第一个维度。构建k-d树最有效的方法是使用一个分区方法:将中间点放置在根部,所有的东西都有一个更小的一维值,左边更小,右边更大。然后,在左树和右子树上重复此过程,直到要分区的最后一棵树仅由一个元素组成。
  如图 1是 k=2 的二维数据搜索示意图,kd-tree 的每一层为数据的一个维度,并以一个子节点来拆分该维数据区间,取这一维度内小于该节点值的数据放在左子数,反之大于节点值的放在右子树。kd-tree 的每一层都是在数据的下一个维度分开,当数据的维度用完时,则重新返回到第一个维度继续迭代直至确定所查找的数据,该方法使得时间复杂度降低到

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值