PCL 欧式变换,实现点云坐标变换【2024最新版】

264 篇文章 ¥19.90 ¥99.00
本文介绍了点云数据的刚体变换,包括平移和旋转。详细阐述了旋转矩阵的构建,如绕x、y、z轴的旋转,并解释了欧式变换的概念,它不改变物体的形状和大小。最后,讨论了变换矩阵的含义,并提到了代码实现和结果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


在这里插入图片描述

本文由CSDN点云侠原创,博客长期更新,本文最近一次更新时间为:2024年12月29日。

一、点云变换

  一般来说,两片点云数据的刚体变换主要分为平移变换和旋转变换,没有缩放变换和扭曲变形。刚体变换的目的是确定两片点云数据之间的旋转平移的变换关系,并使点云数据统一到同一个坐标系中。因此,刚体变换可以描述为求解不同坐标系的变换矩阵。由三维扫描装置获取的点云数据,符合不扭曲物体形状和大小的这一前提下,沿 ( x , y , z ) (x,y,z) (x,

### 使用 PCL实现点云欧式聚类 在处理点云数据时,`PCL (Point Cloud Library)` 提供了一个强大的工具集来执行各种操作,其中包括欧几里得聚类提取。以下是关于如何使用 `pcl::EuclideanClusterExtraction` 类实现点云欧式聚类的具体方法。 #### 1. 数据准备 为了进行欧式聚类,首先需要加载或创建一个点云对象。通常情况下,这可以通过传感器获取或者从文件读取完成。假设我们已经有一个点云对象 `cloud`: ```cpp #include <pcl/point_cloud.h> #include <pcl/io/pcd_io.h> // 加载点云数据 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); if (pcl::io::loadPCDFile<pcl::PointXYZ>("input.pcd", *cloud) == -1) { std::cerr << "Could not read file\n"; } ``` 此部分代码用于加载 `.pcd` 文件中的点云数据[^1]。 --- #### 2. 创建滤波器并设置参数 由于原始点云可能包含噪声或其他不需要的数据,因此可以先应用体素网格下采样滤波器以减少计算量。 ```cpp #include <pcl/filters/voxel_grid.h> pcl::VoxelGrid<pcl::PointXYZ> vg; pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>()); vg.setInputCloud(cloud); vg.setLeafSize(0.01f, 0.01f, 0.01f); // 设置体素大小 vg.filter(*cloud_filtered); ``` 通过调整 `setLeafSize()` 的参数值,可以根据需求控制分辨率[^1]。 --- #### 3. 执行欧式聚类 接下来定义 `pcl::EuclideanClusterExtraction` 并配置其参数以提取集群。 ```cpp #include <pcl/segmentation/euclidean_cluster_extraction.h> std::vector<pcl::PointIndices> cluster_indices; pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>()); tree->setInputCloud(cloud_filtered); pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec; ec.setClusterTolerance(0.02); // 距离阈值(单位:米) ec.setMinClustersize(100); // 最小簇大小 ec.setMaxClustersize(25000); // 最大簇大小 ec.setSearchMethod(tree); ec.setInputCloud(cloud_filtered); ec.extract(cluster_indices); ``` 在此过程中: - `setClusterTolerance()` 定义了两个被认为是同一簇的最大距离。 - `setMinClustersize()` 和 `setMaxClustersize()` 控制每个簇中允许的最小和最大数。 --- #### 4. 可视化结果 最后一步是对提取到的各个簇进行可视化展示。 ```cpp #include <pcl/visualization/pcl_visualizer.h> int j = 0; pcl::visualization::PCLVisualizer viewer("Cluster Viewer"); for (const auto& indices : cluster_indices) { pcl::PointCloud<pcl::PointXYZRGB>::Ptr colored_cluster(new pcl::PointCloud<pcl::PointXYZRGB>()); for (const auto& idx : indices.indices) { pcl::PointXYZRGB point; point.x = cloud_filtered->points[idx].x; point.y = cloud_filtered->points[idx].y; point.z = cloud_filtered->points[idx].z; uint8_t r = static_cast<uint8_t>(rand() % 256); uint8_t g = static_cast<uint8_t>(rand() % 256); uint8_t b = static_cast<uint8_t>(rand() % 256); point.r = r; point.g = g; point.b = b; colored_cluster->push_back(point); } std::stringstream ss; ss << "cluster_" << j++; viewer.addPointCloud(colored_cluster, ss.str()); } viewer.spin(); ``` 这段代码随机分配颜色给不同的簇,并将其显示在一个窗口中。 --- ### 总结 以上展示了完整的流程,包括点云预处理、欧式聚类以及最终的结果可视化。这些步骤共同构成了基于 PCL 实现点云欧式变换的核心逻辑。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值