PCL LM-ICP算法实现点云精配准【2024最新版】

264 篇文章 ¥19.90 ¥99.00
本文介绍了LM-ICP算法在点云精配准中的原理和实现过程。通过Levenberg-Marquardt优化,LM-ICP能够处理非线性问题,具有良好的局部和全局收敛性。文章详细阐述了算法的迭代条件、模型思想及计算步骤,并提供了代码实现和结果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
本文由CSDN点云侠原创,原文链接,首发于:2021年3月5日。抄袭狗把自己当个狗!!!。

博客长期更新,本文最新更新时间为:2024年10月19日。代码在PCL1.14.1中测试通过,新增2024年对该算法的最新理解。

一、算法原理

1、算法概述

  IterativeClosestPointNonLinear是使用Levenberg-Marquardt优化后端的ICP变体。
该算法有几个终止条件:

  1. 迭代次数已达到用户强加的
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值