PCL RANSAC拟合球体【2024最新版】

264 篇文章 ¥19.90 ¥99.00
本文介绍了RANSAC算法的基本原理及其在拟合3D球体中的应用。通过随机选取数据点计算模型参数,并判断其他点是否符合模型,反复迭代以找到最佳拟合球。在PCL库中,SampleConsensusModelSphere类用于实现这一功能,定义了球心坐标和半径等模型系数。文章还涵盖了代码实现和结果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
本文由CSDN点云侠原创,原文链接,首发于:2021年8月7日。抄袭狗把自己当个狗!!!。

博客长期更新,本文最新更新时间为:2024年10月20日。代码在PCL1.14.1中测试通过

一、算法原理

1、概述

  随机抽样一致性算法RANSAC(Random sample consensus)是一种迭代的方法来从一系列包含有离异值的数据中计算数学模型参数的方法。
  RANSAC算法本质上由两步组成,不断进行循环:
  (1)从输入数据中随机选出能组成数学模型的最小数目的元素,使用这些元素计算出相应模型的参数。选出的这些元素数目是能决定模型参数的最少的。
  (2)检查所有数据中有哪些元素能符合第一步得到的模型。超过错误阈值的元素认为是离群值(outlier),小于错误阈值的元素认为是内部点(inlier)。
  这个过程重复多次,选出包含

<think>我们使用PCL库通过RANSAC算法进行空间圆的拟合与分割。空间圆的参数包括圆心坐标(x,y,z)、法向量(nx,ny,nz)和半径r。PCL库中提供了RANSAC算法,但默认支持平面、球体、圆柱等模型,并没有直接提供空间圆模型。因此,我们需要自定义模型。以下是步骤:1.**自定义空间圆模型**:继承`pcl::SampleConsensusModel`,实现一个空间圆模型类。2.**实现模型参数估计**:在自定义类中,实现从样本点估计空间圆参数的方法。3.**实现距离计算**:计算点到空间圆的距离(通常为点到圆平面的距离与点到圆心的距离减去半径的绝对值之和)。4.**使用RANSAC算法**:创建RANSAC对象,设置模型为自定义的空间圆模型,进行拟合。5.**分割点云**:根据拟合结果,分割出属于空间圆的点。###1.自定义空间圆模型类我们需要创建一个继承自`pcl::SampleConsensusModel<PointT>`的类,并重写几个关键函数。```cpp#include<pcl/sample_consensus/sac_model.h>#include<pcl/sample_consensus/model_types.h>template<typenamePointT>classSampleConsensusModelCircle3D:publicpcl::SampleConsensusModel<PointT>{public:usingpcl::SampleConsensusModel<PointT>::model_name_;usingpcl::SampleConsensusModel<PointT>::input_;usingpcl::SampleConsensusModel<PointT>::indices_;usingpcl::SampleConsensusModel<PointT>::error_sqr_dists_;SampleConsensusModelCircle3D(consttypenamepcl::PointCloud<PointT>::ConstPtr&cloud,boolrandom=false):pcl::SampleConsensusModel<PointT>(cloud,random){model_name_="SampleConsensusModelCircle3D";//一个圆需要3个点(不共线)来定义setSampleSize(3);}//从样本中估计模型参数boolcomputeModelCoefficients(conststd::vector<int>&samples,Eigen::VectorXf&model_coefficients)override{//检查样本数量if(samples.size()!=3)returnfalse;//获取三个点PointTp0=input_->points[samples[0]];PointTp1=input_->points[samples[1]];PointTp2=input_->points[samples[2]];//计算两个向量Eigen::Vector3fv1(p1.x-p0.x,p1.y-p0.y,p1.z-p0.z);Eigen::Vector3fv2(p2.x-p0.x,p2.y-p0.y,p2.z-p0.z);//计算法向量(圆的平面法向量)Eigen::Vector3fnormal=v1.cross(v2);if(normal.norm()<1e-6)//共线,无法形成平面returnfalse;normal.normalize();//计算圆心和半径:通过三点求外接圆//先求两边的中垂面,然后求交线(圆心在交线上),最后求圆心和半径//这里采用几何方法:圆心到三点距离相等//设圆心为c,则|c-p0|=|c-p1|=|c-p2|=r//转化为解方程组//构建方程组:两个方程(从p0到p1和p0到p2的垂直平分面)//垂直平分面1:(p1-p0)·(c-(p0+p1)/2)=0//垂直平分面2:(p2-p0)·(c-(p0+p2)/2)=0Eigen::Vector3fmid01=(p0.getVector3fMap()+p1.getVector3fMap())*0.5;Eigen::Vector3fmid02=(p0.getVector3fMap()+p2.getVector3fMap())*0.5;//平面1法向量为v1,平面2法向量为v2//圆心c同时满足两个平面方程,且位于三点确定的平面内(即满足平面方程:(c-p0)·normal=0)//所以我们可以用三个方程求解c//构建线性方程组:A*c=bEigen::Matrix3fA;A.row(0)=v1;A.row(1)=v2;A.row(2)=normal;Eigen::Vector3fb;b[0]=v1.dot(mid01);b[1]=v2.dot(mid02);b[2]=normal.dot(p0.getVector3fMap());//求解圆心cEigen::Vector3fcenter=A.colPivHouseholderQr().solve(b);//计算半径floatradius=(p0.getVector3fMap()-center).norm();//模型系数:圆心x,y,z,法向量nx,ny,nz,半径rmodel_coefficients.resize(7);model_coefficients[0]=center[0];model_coefficients[1]=center[1];model_coefficients[2]=center[2];model_coefficients[3]=normal[0];model_coefficients[4]=normal[1];model_coefficients[5]=normal[2];model_coefficients[6]=radius;returntrue;}//计算点到模型的距离voidgetDistancesToModel(constEigen::VectorXf&model_coefficients,std::vector<double>&distances)override{//检查模型系数if(model_coefficients.size()!=7){PCL_ERROR("[pcl::SampleConsensusModelCircle3D::getDistancesToModel]Invalidnumberofmodelcoefficientsgiven(%lu)!\n",model_coefficients.size());return;}//圆心Eigen::Vector3fcenter(model_coefficients[0],model_coefficients[1],model_coefficients[2]);//法向量Eigen::Vector3fnormal(model_coefficients[3],model_coefficients[4],model_coefficients[5]);normal.normalize();//确保单位向量floatradius=model_coefficients[6];distances.resize(indices_->size());//遍历所有点,计算距离for(size_ti=0;i<indices_->size();++i){PointTp=input_->points[(*indices_)[i]];Eigen::Vector3fpt(p.x,p.y,p.z);//点到圆平面的距离Eigen::Vector3fdiff=pt-center;floatdist_to_plane=diff.dot(normal);//有正负,取绝对值//投影到圆平面上的点Eigen::Vector3fprojected=pt-dist_to_plane*normal;//计算投影点到圆心的距离floatdist_to_center=(projected-center).norm();//点到圆的距离:平面距离+半径方向距离(即|dist_to_center-radius|)//这里我们使用欧式距离的近似:sqrt(dist_to_plane^2+(dist_to_center-radius)^2)//但通常我们使用两个距离的加权和,或者直接使用这两个距离的绝对值之和//为了简单,我们使用绝对值之和:|dist_to_plane|+|dist_to_center-radius|distances[i]=std::abs(dist_to_plane)+std::abs(dist_to_center-radius);}}//其他必要函数:如优化模型系数、投影点等(根据需求实现)voidoptimizeModelCoefficients(conststd::vector<int>&inliers,constEigen::VectorXf&model_coefficients,Eigen::VectorXf&optimized_coefficients)override{//可以使用最小二乘法优化圆参数(利用所有内点重新计算圆)//这里省略具体实现,可以直接调用非线性优化(如Levenberg-Marquardt)或者解析解//作为示例,我们直接使用内点重新计算模型(类似computeModelCoefficients,但使用所有内点)//但注意:需要至少3个点,且不共线if(inliers.size()<3){optimized_coefficients=model_coefficients;return;}//这里我们采用非线性优化(使用Eigen的Levenberg-Marquardt)或者使用解析的最小二乘拟合圆(在平面内)//由于空间圆需要同时优化圆心、法向量和半径,比较复杂,这里仅给出框架//作为示例,我们直接使用原始模型系数optimized_coefficients=model_coefficients;}//选择内点:RANSAC会调用getDistancesToModel,然后根据阈值判断内点//我们不需要重写,基类有默认实现(基于距离阈值)//其他虚函数,如projectPoints等,根据需求实现};```###2.使用自定义模型进行RANSAC拟合创建RANSAC对象,设置模型为我们自定义的空间圆模型。```cpp#include<pcl/sample_consensus/ransac.h>#include<pcl/point_types.h>#include<pcl/point_cloud.h>intmain(){//读取点云pcl::PointCloud<pcl::PointXYZ>::Ptrcloud(newpcl::PointCloud<pcl::PointXYZ>);//...读入点云数据//创建自定义模型对象SampleConsensusModelCircle3D<pcl::PointXYZ>::Ptrmodel(newSampleConsensusModelCircle3D<pcl::PointXYZ>(cloud));//创建RANSAC对象pcl::RandomSampleConsensus<pcl::PointXYZ>ransac(model);ransac.setDistanceThreshold(0.01);//设置距离阈值ransac.setMaxIterations(1000);//设置最大迭代次数//计算模型ransac.computeModel();//获取内点std::vector<int>inliers;ransac.getInliers(inliers);//获取模型系数Eigen::VectorXfmodel_coefficients;ransac.getModelCoefficients(model_coefficients);//输出模型参数std::cout<<"Circlecenter:("<<model_coefficients[0]<<","<<model_coefficients[1]<<","<<model_coefficients[2]<<")\n";std::cout<<"Normal:("<<model_coefficients[3]<<","<<model_coefficients[4]<<","<<model_coefficients[5]<<")\n";std::cout<<"Radius:"<<model_coefficients[6]<<std::endl;//分割点云:将内点提取出来pcl::PointCloud<pcl::PointXYZ>::Ptrcircle_cloud(newpcl::PointCloud<pcl::PointXYZ>);pcl::copyPointCloud(*cloud,inliers,*circle_cloud);//...后续处理}```###注意事项1.自定义模型需要正确实现`computeModelCoefficients`和`getDistancesToModel`,这是RANSAC算法的核心。2.三点求圆时,如果三点共线则无法确定圆,需要处理这种情况。3.距离计算方式可以根据实际情况调整(比如使用欧式距离的平方等)。4.优化模型系数(`optimizeModelCoefficients`)可以使用更精确的方法,比如利用所有内点通过最小二乘法拟合空间圆,但实现较为复杂。###相关问题1.如何提高RANSAC拟合空间圆的效率?2.除了RANSAC,还有哪些方法可以用于空间圆的拟合?3.如何评估空间圆拟合的精度?</think>### PCL RANSAC 空间圆拟合与分割实现方法 在PCL库中实现空间圆的拟合与分割需要自定义RANSAC模型,因为PCL原生不支持空间圆模型。以下是完整实现步骤: #### 1. 自定义空间圆模型类 ```cpp #include <pcl/sample_consensus/sac_model.h> #include <pcl/sample_consensus/model_types.h> template <typename PointT> class SampleConsensusModelCircle3D : public pcl::SampleConsensusModel<PointT> { public: using PointCloud = typename pcl::SampleConsensusModel<PointT>::PointCloud; SampleConsensusModelCircle3D(const typename PointCloud::ConstPtr &cloud) : pcl::SampleConsensusModel<PointT>(cloud) { model_name_ = "Circle3D"; setSampleSize(3); // 需要3个点定义空间圆 } bool computeModelCoefficients(const std::vector<int> &samples, Eigen::VectorXf &model_coefficients) override { // 获取三个样本点 const PointT &p1 = input_->points[samples[0]]; const PointT &p2 = input_->points[samples[1]]; const PointT &p3 = input_->points[samples[2]]; // 计算平面法向量 (圆所在平面) Eigen::Vector3f v1(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z); Eigen::Vector3f v2(p3.x - p1.x, p3.y - p1.y, p3.z - p1.z); Eigen::Vector3f normal = v1.cross(v2).normalized(); // 计算圆心和半径 (三点外接圆) // ... 几何计算实现 ... // 结果存入model_coefficients: [cx, cy, cz, nx, ny, nz, radius] return true; } void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector<double> &distances) override { // 提取模型参数 Eigen::Vector3f center(model_coefficients[0], model_coefficients[1], model_coefficients[2]); Eigen::Vector3f normal(model_coefficients[3], model_coefficients[4], model_coefficients[5]); float radius = model_coefficients[6]; for (size_t i = 0; i < indices_->size(); ++i) { const PointT &p = input_->points[(*indices_)[i]]; Eigen::Vector3f pt(p.x, p.y, p.z); // 计算点到圆平面的距离 float dist_to_plane = std::abs((pt - center).dot(normal)); // 计算点到圆心的平面投影距离 Eigen::Vector3f proj = pt - (pt - center).dot(normal) * normal; float dist_to_center = (proj - center).norm(); // 综合距离 = 平面距离 + |投影距离 - 半径| distances[i] = dist_to_plane + std::abs(dist_to_center - radius); } } // 其他必要重写函数... }; ``` #### 2. RANSAC拟合实现 ```cpp #include <pcl/sample_consensus/ransac.h> #include <pcl/filters/extract_indices.h> void fitAndSegmentCircle(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud) { // 创建自定义模型 using ModelT = SampleConsensusModelCircle3D<pcl::PointXYZ>; typename ModelT::Ptr model(new ModelT(cloud)); // 配置RANSAC pcl::RandomSampleConsensus<pcl::PointXYZ> ransac(model); ransac.setDistanceThreshold(0.01); // 距离阈值 ransac.setMaxIterations(1000); // 最大迭代次数 // 执行拟合 ransac.computeModel(); // 获取结果 std::vector<int> inliers; ransac.getInliers(inliers); Eigen::VectorXf coeff; ransac.getModelCoefficients(coeff); // 分割点云 pcl::PointIndices::Ptr circle_inliers(new pcl::PointIndices); circle_inliers->indices = inliers; pcl::ExtractIndices<pcl::PointXYZ> extract; extract.setInputCloud(cloud); extract.setIndices(circle_inliers); pcl::PointCloud<pcl::PointXYZ>::Ptr circle_cloud(new pcl::PointCloud<pcl::PointXYZ>); extract.filter(*circle_cloud); // 提取圆上的点 // 输出参数: [cx, cy, cz, nx, ny, nz, radius] std::cout << "圆心: (" << coeff[0] << ", " << coeff[1] << ", " << coeff[2] << ")\n" << "法向量: (" << coeff[3] << ", " << coeff[4] << ", " << coeff[5] << ")\n" << "半径: " << coeff[6] << std::endl; } ``` #### 3. 关键实现细节 1. **三点定圆原理**: - 三个不共线点确定空间圆 - 计算步骤: - 三点确定平面(法向量 $ \vec{n} $) - 计算三点外接圆圆心 $ C $ - 计算半径 $ r = \| P_1 - C \| $ 2. **距离计算**: - 点到空间圆距离 $ d = d_{\text{平面}} + |d_{\text{投影}} - r| $ - $ d_{\text{平面}} = |(\vec{P} - \vec{C}) \cdot \vec{n}| $ - $ d_{\text{投影}} = \| (\vec{P} - \vec{C}) - [(\vec{P} - \vec{C}) \cdot \vec{n}] \vec{n} \| $ 3. **参数优化**: ```cpp void optimizeModel(const std::vector<int> &inliers, Eigen::VectorXf &optimized_coeff) { // 使用所有内点进行最小二乘优化 // 实现Levenberg-Marquardt等非线性优化算法 } ``` #### 4. 应用示例 ```cpp int main() { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); // ... 加载点云数据 ... // 执行拟合与分割 fitAndSegmentCircle(cloud); // 可选:多次执行检测多个圆 while (cloud->size() > min_points) { fitAndSegmentCircle(cloud); // 移除已检测的点... } return 0; } ``` #### 注意事项: 1. **采样策略**:使用PROSAC等改进算法可加速收敛[^1] 2. **异常处理**:添加三点共线检查 3. **参数调整**:根据点云密度调整距离阈值 4. **性能优化**:使用KD树加速邻域搜索 ### 相关问题 1. 如何提高空间圆拟合的精度? 2. RANSAC拟合空间圆时如何处理噪声点? 3. 除了RANSAC,还有哪些算法可用于空间圆拟合? 4. 如何评估空间圆拟合结果的准确性? [^1]: RANSAC算法原理与应用 [^2]: PCL自定义模型开发指南 [^3]: 空间几何计算最佳实践
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值