PCL 主成分分析(PCA)在三维点云中的应用【2025最新版】

264 篇文章 ¥19.90 ¥99.00
本文详细介绍了主成分分析(PCA)在三维点云处理中的应用,包括算法原理、核心源码、代码实现及结果展示。通过计算特征值特征向量、点云投影和数据复原,实现点云的降维与分析,同时展示了原始点云与投影点云的对比效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

本文由CSDN点云侠原创,博客长期更新,本文最近一次更新时间为:2025年1月19日。

一、算法原理

1、计算特征值特征向量

  针对整个点云 P = { p i } i = 1 i = m P={\lbrace p_i\rbrace}_{i=1}^{i=m} P=

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值