PCL 点云去质心【2025最新版】

264 篇文章 ¥19.90 ¥99.00
点云去质心是计算机视觉中关键步骤,用于计算点云协方差。通过求质心并减去,能隐藏点云原始坐标。在SVD和PCA等操作中有应用。本文介绍PCL库中涉及的主要函数,如compute3DCentroid()和demeanPointCloud(),并展示代码实现及Python版本的参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

博客长期更新,本文最近更新时间为:2025年1月11日。

一、概述

  点云去质心是计算点云协方差的重要一步,求出点云的质心点,每个点减去质心点的坐标,最后再重新保存为点云数据。可以起到隐藏点云真实坐标信息的作用。在SVD求变换矩阵、主成分分析求协方差矩阵等操作中都有用到。

二、主要函数

pcl::demeanPointCloud()从点云中减去一个质心,并返回去均值的结果

  • 使用该函数需添加:#include <pcl/common/centroid.h>头文件

重载方式

pcl::demeanPointCloud (
点云处理中,质心的计算是将点云视为均匀分布的质点集合,假设每个点的质量相同,质心即为所有点坐标的加权平均值。对于三维点云数据,其质心坐标 $ P_C = (x_c, y_c, z_c) $ 的计算公式如下: $$ x_c = \frac{1}{n} \sum_{i=0}^{n} x_i,\quad y_c = \frac{1}{n} \sum_{i=0}^{n} y_i,\quad z_c = \frac{1}{n} \sum_{i=0}^{n} z_i $$ 其中 $ n $ 为点云中点的数量,$ (x_i, y_i, z_i) $ 表示第 $ i $ 个点的坐标[^1]。 PCL(Point Cloud Library)提供了高效的点云处理工具,包括计算点云质心的功能。具体方法是使用 `pcl::compute3DCentroid` 函数,该函数接受一个点云对象和一个输出向量,用于存储计算出的质心坐标。 ### 示例代码 以下是一个使用 PCL 计算点云质心的完整示例: ```cpp #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/common/common.h> int main(int argc, char** argv) { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); // 加载点云文件 if (pcl::io::loadPCDFile<pcl::PointXYZ>("input_cloud.pcd", *cloud) == -1) { PCL_ERROR("Couldn't read file input_cloud.pcd\n"); return (-1); } // 计算质心 Eigen::Vector4f centroid; pcl::compute3DCentroid(*cloud, centroid); // 输出质心坐标 std::cout << "Centroid: (" << centroid[0] << ", " << centroid[1] << ", " << centroid[2] << ")" << std::endl; return 0; } ``` 上述代码首先加载一个点云文件,然后调用 `pcl::compute3DCentroid` 函数计算质心,并将结果以 `Eigen::Vector4f` 类型返回。由于质心通常只涉及三维空间坐标,因此前三个元素分别表示 $ x $、$ y $、$ z $ 坐标。 需要注意的是,该方法默认所有点具有相同的权重,适用于均匀密度的点云数据。若需要考虑不同点的质量差异,则需自行实现加权平均的计算逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值