PCL 最远点采样【2024最新版】

264 篇文章 ¥19.90 ¥99.00
本文介绍了PCL库中的Farthest Point Sampling (FPS)算法,该算法用于点云采样,确保采样点具有良好的覆盖率。文章详细阐述了算法原理,包括随机选取初始点并迭代寻找最远点的过程。此外,还提及了PCL1.13.0版本中新增的相关函数,并引用了相关文献。文章后续部分包含代码实现、结果展示及更多资源链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

本文由CSDN点云侠原创,原文链接,首发于:2022年12月24日。博客长期更新,本文最近一次更新时间为:2024年10月15日,代码在PCL1.14.1测试通过。抄袭狗把自己当个狗!!!

一、算法原理

1、算法概述

  Farthest Point Sampling (FPS):顾名思义,也就是每次采样的时候都选择离之前采样得到的 k − 1 k-1

最远点采样算法PCL)是一种在三维空间中对点云数据进行采样算法。点云是由大量离散点组成的三维数据集,可用于表示物体的形状、结构和特征等信息。 最远点采样算法的目标是从点云数据中选择一组具有最大平均距离的离散点集合。这样的采样结果能够更好地表示原始点云数据的几何特征,可以用于点云数据的降采样、特征提取等应用。 算法的实现步骤如下: 1. 随机选择一个初始点作为起始采样点; 2. 计算其他所有点与已选取的采样点之间的距离,并选择距离最远的点作为下一个采样点; 3. 重复步骤2,直到选取足够数量的采样点,或者达到预定的采样密度。 该算法的优点是能够保留点云数据的重要几何特征,尤其适用于包含明显结构的点云数据。通过最远点采样,可以有效地减少点云数据的规模,提高后续处理的效率。 然而,最远点采样算法也存在一些限制。例如,在点云数据中存在噪音或稀疏区域时,算法可能无法准确地选择代表性的采样点。此外,算法的性能受点云数据的分布、密度和采样数量等因素的影响。 总之,最远点采样算法是一种常用的点云数据采样方法,通过选择具有最大平均距离的点,能够保留点云数据的几何特征。它在点云处理和分析中具有广泛应用,可用于降采样、特征提取、配准等任务。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值