OpenCV——最小外接矩形

文章介绍了OpenCV中的cv::minAreaRect函数,该函数用于计算点集的最小外接旋转矩形,并提供了基于旋转卡壳和凸包算法的实现。文中给出的代码示例展示了如何生成随机点集并绘制最小外接矩形。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、主要函数

cv::RotatedRect cv::minAreaRect(
    const cv::Mat& points
);

emspminAreaRect 函数用于计算给定点集的最小外接矩形。该矩形的长和宽是可以任意旋转的,因此被称为旋转矩形。

  • points :是一个包含点集的 Mat 对象。点集可以是二维点集或三维点集,但是只有前两个坐标被使用。返回值是一个 RotatedRect 对象,表示最小外接矩形。
    该函数的实现基于最小面积矩形算法,该算法的基本思路如下:
  1. 找到包含点集的最小矩形,其边与 X 轴和 Y 轴平行;
  2. 对于每个矩形,计算它的面积;
  3. 对于所有矩形中面积最小的矩形,旋转它使得其边可以任意旋转。

  在计算最小矩形时,可以使用不同的算法。OpenCV 中提供了两种算法:旋转卡壳算法和基于凸包的算法。旋转卡壳算法的时间复杂度为 O ( n 2 ) O(n^2) O(n2),而基于凸包的算法复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)。因此,当点集较大时,建议使用基于凸包的算法。

  最后需要注意的是,当点集中只有两个点时,minAreaRect 函数会返回一个包含这两个点的最小外接矩形。

二、代码实现

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main()
{
	// 生成一些带有噪声的数据,用于拟合矩形
	vector<Point2f> points;
	for (int i = 0; i < 100; i++)
	{
		float x = rand() % 200 + 50;
		float y = rand() % 200 + 50;
		points.push_back(Point2f(x, y));
	}

	// 最小外接矩形
	RotatedRect rect = minAreaRect(points);
	// 在图像中绘制矩形
	Mat image = Mat::zeros(300, 300, CV_8UC3);
	Point2f vertices[4];
	rect.points(vertices);
	for (int i = 0; i < 4; i++) 
	{
		line(image, vertices[i], vertices[(i + 1) % 4], Scalar(0, 255, 0), 2);
	}	
	// 绘制结果
	for (int i = 0; i < points.size(); i++)
	{
		circle(image, points[i], 5, cv::Scalar(255, 255, 0), -1);
	}
	// 显示图像
	imshow("Rect", image);
	waitKey(0);

	return 0;
}

三、结果展示

在这里插入图片描述

### OpenCV 中不同版本最小外接矩形角度计算方法 在OpenCV中,`minAreaRect()`函数用于获取给定轮廓的最小面积外切矩形,并返回一个包含矩形中心坐标、尺寸以及旋转角度的元组。对于不同版本的OpenCV,在调用此功能时存在细微差异。 #### OpenCV 2.x 版本 在较早版本如OpenCV 2.x里,为了获得最小外接矩形的具体位置信息(即四个角点),需要先通过`cv2.minAreaRect()`得到描述该矩形的数据结构——由三个元素组成的tuple `(center, size, angle)` ,其中angle表示的是矩形相对于水平线逆时针方向的角度值[^1];之后再利用`cv2.cv.BoxPoints(rect)`转换成具体的四边形顶点坐标列表以便后续处理或显示。 ```python import numpy as np import cv2 cnt = np.array([[x1,y1], [x2,y2], [x3,y3], [x4,y4]]) rect = cv2.minAreaRect(cnt) box_points_2x = cv2.cv.BoxPoints(rect) ``` #### OpenCV 3.x 及以上版本 自OpenCV 3.x起,官方推荐使用`cv2.boxPoints()`替代已弃用的方法`cv2.cv.BoxPoints()`来完成同样的操作,这使得API更加简洁统一[^2]: ```python import numpy as np import cv2 cnt = np.array([[x1,y1], [x2,y2], [x3,y3], [x4,y4]]) rect = cv2.minAreaRect(cnt) box_points_3x_and_above = cv2.boxPoints(rect) ``` 值得注意的是,无论哪个版本,所返回的角度都是基于图像中的正X轴顺时针测量至矩形较长的一侧之间的夹角。当宽度大于高度时,这个角度会在[-90°, 0°)范围内变化;而如果高度超过宽度,则会给出正值范围内的结果(0°~90°)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值