C#使用Onnx进行行人检测

本文介绍如何使用ONNX Runtime和Faster R-CNN模型进行目标检测,包括搭建.NET5控制台应用环境、处理图像数据、运行模型预测及结果可视化等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.VS2019创建.Net5控制台程序,命名为OnnxDemo

2.NuGet安装以下几个库,注意勾选包括预发行版哦,否则其中一个库你找不到的

3.OnnxRuntime在github上有一个onnx文件叫【FasterRCNN-10.onnx】,下载好并放在我们的onnxs文件夹下

4.准备一些检测的图片放在inputs文件夹中

5.建立outputs文件夹存放测试结果

6.Demo代码如下【Program.cs文件】

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Microsoft.ML.OnnxRuntime.Tensors;
using SixLabors.ImageSharp;
using SixLabors.ImageSharp.Formats;
using SixLabors.ImageSharp.PixelFormats;
using SixLabors.ImageSharp.Processing;
using SixLabors.ImageSharp.Drawing.Processing;
using SixLabors.Fonts;
//using SixLabors.Fonts;
//using System.Drawing;

namespace Microsoft.ML.OnnxRuntime.FasterRcnnSample
{
    class Program
    {
        public static void Main(string[] args)
        {
            // OnnxRuntime官网提供的模型文件,已下载到项目运行文件夹下
            // Read paths
            string modelFilePath = @"onnxs/FasterRCNN-10.onnx";

            // 读取模型文件到会话对象中
            // Run inference
            using var session = new InferenceSession(modelFilePath);

            // 依次读入每一张待检测的图片,图片在inputs文件夹下
            for (int bl = 1; bl <= Directory.GetFiles("inputs").Length; bl++)
            {
                string imageFilePath = $"inputs/({bl}).jpeg";
                string outImageFilePath = $"outputs/{bl}.jpeg";

                // 读取图片
                // Read image
                using Image<Rgb24> image = Image.Load<Rgb24>(imageFilePath);

                // 改变图片大小至模型运算指定的大小
                // Resize image
                float ratio = 800f / Math.Min(image.Width, image.Height);
                image.Mutate(x => x.Resize((int)(ratio * image.Width), (int)(ratio * image.Height)));

                // Preprocess image
                var paddedHeight = (int)(Math.Ceiling(image.Height / 32f) * 32f);
                var paddedWidth = (int)(Math.Ceiling(image.Width / 32f) * 32f);
                Tensor<float> input = new DenseTensor<float>(new[] { 3, paddedHeight, paddedWidth });
                var mean = new[] { 102.9801f, 115.9465f, 122.7717f };
                for (int y = paddedHeight - image.Height; y < image.Height; y++)
                {
                    image.ProcessPixelRows(im =>
                    {
                        var pixelSpan = im.GetRowSpan(y);
                        for (int x = paddedWidth - image.Width; x < image.Width; x++)
                        {
                            input[0, y, x] = pixelSpan[x].B - mean[0];
                            input[1, y, x] = pixelSpan[x].G - mean[1];
                            input[2, y, x] = pixelSpan[x].R - mean[2];
                        }
                    });

                }

                // 将图片传至模型输入层
                // Setup inputs and outputs
                var inputs = new List<NamedOnnxValue>
                {
                    NamedOnnxValue.CreateFromTensor("image", input)
                };

                // 运行模型得到结果
                using IDisposableReadOnlyCollection<DisposableNamedOnnxValue> results = session.Run(inputs);

                // 对运行结果解析
                // Postprocess to get predictions
                var resultsArray = results.ToArray();
                float[] boxes = resultsArray[0].AsEnumerable<float>().ToArray();
                long[] labels = resultsArray[1].AsEnumerable<long>().ToArray();
                float[] confidences = resultsArray[2].AsEnumerable<float>().ToArray();

                var predictions = new List<Prediction>();
                // 置信度不小于0.7则视为检测出该特征
                var minConfidence = 0.7f;
                for (int i = 0; i < boxes.Length - 4; i += 4)
                {
                    var index = i / 4;
                    if (confidences[index] >= minConfidence)
                    {
                        predictions.Add(new Prediction
                        {
                            Box = new Box(boxes[i], boxes[i + 1], boxes[i + 2], boxes[i + 3]),
                            Label = LabelMap.Labels[labels[index]],
                            Confidence = confidences[index]
                        });
                    }
                }

                // 给检测的对象画框
                // Put boxes, labels and confidence on image and save for viewing
                using var outputImage = File.OpenWrite(outImageFilePath);
                Font font = SystemFonts.CreateFont("Arial", 28);
                foreach (var p in predictions)
                {
                    image.Mutate(x =>
                    {
                        x.DrawLines(Color.Red, 2f, new PointF[] {

                        new PointF(p.Box.Xmin, p.Box.Ymin),
                        new PointF(p.Box.Xmax, p.Box.Ymin),

                        new PointF(p.Box.Xmax, p.Box.Ymin),
                        new PointF(p.Box.Xmax, p.Box.Ymax),

                        new PointF(p.Box.Xmax, p.Box.Ymax),
                        new PointF(p.Box.Xmin, p.Box.Ymax),

                        new PointF(p.Box.Xmin, p.Box.Ymax),
                        new PointF(p.Box.Xmin, p.Box.Ymin)
                        });
                        x.DrawText($"{p.Label}, {p.Confidence:0.00}", font, Color.Blue, new PointF(p.Box.Xmin, p.Box.Ymin));
                    });
                }
                // 图片保存到outputs文件夹下
                image.SaveAsJpeg(outputImage);
            }
        }
    }
    public class Prediction
    {
        public Box Box { set; get; }
        public string Label { set; get; }
        public float Confidence { set; get; }
    }
    public class Box
    {
        public Box(float xMin, float yMin, float xMax, float yMax)
        {
            Xmin = xMin;
            Ymin = yMin;
            Xmax = xMax;
            Ymax = yMax;
        }
        public float Xmin { set; get; }
        public float Xmax { set; get; }
        public float Ymin { set; get; }
        public float Ymax { set; get; }
    }

    public static class LabelMap
    {
        static LabelMap()
        {
            Labels = new string[]
            {
                "",
                "person",
                "bicycle",
                "car",
                "motorcycle",
                "airplane",
                "bus",
                "train",
                "truck",
                "boat",
                "traffic light",
                "fire hydrant",
                "stop sign",
                "parking meter",
                "bench",
                "bird",
                "cat",
                "dog",
                "horse",
                "sheep",
                "cow",
                "elephant",
                "bear",
                "zebra",
                "giraffe",
                "backpack",
                "umbrella",
                "handbag",
                "tie",
                "suitcase",
                "frisbee",
                "skis",
                "snowboard",
                "sports ball",
                "kite",
                "baseball bat",
                "baseball glove",
                "skateboard",
                "surfboard",
                "tennis racket",
                "bottle",
                "wine glass",
                "cup",
                "fork",
                "knife",
                "spoon",
                "bowl",
                "banana",
                "apple",
                "sandwich",
                "orange",
                "broccoli",
                "carrot",
                "hot dog",
                "pizza",
                "donut",
                "cake",
                "chair",
                "couch",
                "potted plant",
                "bed",
                "dining table",
                "toilet",
                "tv",
                "laptop",
                "mouse",
                "remote",
                "keyboard",
                "cell phone",
                "microwave",
                "oven",
                "toaster",
                "sink",
                "refrigerator",
                "book",
                "clock",
                "vase",
                "scissors",
                "teddy bear",
                "hair drier",
                "toothbrush"
            };
        }

        public static string[] Labels { set; get; }
    }
}

7.项目结构如下

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值