自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 资源 (1)
  • 收藏
  • 关注

原创 自动驾驶ROS2应用技术详解

感知融合是自动驾驶系统中的核心技术,通过整合多种传感器数据和多个AI模型的输出,提供更准确、更可靠的环境感知结果。本文档详细介绍了ROS2在自动驾驶系统中的应用实践,涵盖了从感知输出到系统集成的完整技术链条。这些技术和方法已在实际项目中得到验证,可以作为开发高性能自动驾驶系统的重要参考。

2025-07-07 17:28:12 953

原创 D2-ROS2入门文档

ROS2(Robot Operating System 2)是一个开源的机器人开发框架,旨在简化机器人软件的开发和集成。它提供了一系列工具、库和约定,帮助开发者在不同平台上构建复杂的机器人行为。相比 ROS1,ROS2 引入了改进的性能、更高的可靠性和更灵活的架构,广泛应用于机器人研究和工业应用。本教程为初学者设计,涵盖 ROS2 的安装、核心概念和简单程序开发,内容以 Markdown 格式呈现,易于阅读和实践。

2025-06-20 16:33:23 295

原创 D1-QNX学习文档

QNX 是一种商业化的类 Unix 实时操作系统,专为嵌入式系统设计。它以高可靠性、实时性能和可扩展性著称,广泛应用于汽车(如车载信息娱乐系统、自动驾驶)、医疗设备、工业控制及航空航天领域。QNX 由加拿大 QNX Software Systems 公司于 1980 年代初开发,最初名为 QUNIX,后因法律原因改为 QNX。2004 年被哈曼国际收购,2010 年归属黑莓(BlackBerry)公司。截至 2022 年,全球约 2 亿辆汽车使用 QNX 系统,覆盖奥迪、宝马、福特等品牌。修改代码。

2025-06-19 11:05:04 293

原创 P9-QA 数据集生成工具

本项目开发了一个基于Qwen3语言模型的QA数据集生成工具,主要功能包括:1)支持处理TXT、PDF和DOCX格式的文件,自动提取文本内容并分割为语义完整的句子;2)利用Qwen3模型生成自然的问题,并自动补充主语以提高问题清晰度;3)采用检索增强生成(RAG)流程,结合Chroma向量数据库和HuggingFace嵌入模型生成准确回答;4)提供Gradio交互界面,支持文件上传、QA对可视化展示和JSON格式数据集下载。该工具实现了从文档预处理到问答数据集生成的全流程自动化,为构建高质量问答数据集提供了便

2025-06-09 15:26:05 634

原创 D3-基于本地Ollama模型的写作助手Agent

本程序是一个基于 Gradio 和 Ollama API 构建的。它能够根据用户输入的写作需求,自动生成文章大纲和完整文章,支持对话历史记录、Token 计数、参数调节、大纲编辑和结果导出功能,提供灵活的交互体验。程序采用模块化设计,通过抽象基类LLMAgent实现,当前使用调用本地部署的 Ollama 大语言模型(如qwen3:8b未来可通过实现新的LLMAgent子类扩展到其他 LLM 平台(如 OpenAI、HuggingFace)。

2025-06-04 10:23:27 371

原创 D2-基于本地Ollama模型的多轮问答系统

本项目(main.py)是一个基于 Gradio 和 Ollama 的通用问答助手,支持本地部署的大语言模型(如qwen3:8b),用户可通过 Web 界面输入任意问题并获取模型回答。程序采用模块化设计,定义了抽象的LLMAgent接口与具体实现,具备良好的扩展性,未来可快速接入 OpenAI、Claude、Mistral 等模型。

2025-06-03 17:42:25 867

原创 D1-基于本地Ollama模型的单轮问答系统

依赖导入使用了以下库:gradio: 创建 Web 用户界面。requests: 发送 HTTP 请求到 Ollama API。[json](file://i:\OneDrive\1_LLM_Project\2_Agent\OpenManus\config\mcp.example.json): 解析 API 响应数据。logging: 记录运行日志。ABC: 定义抽象基类以实现接口设计模式。

2025-06-03 15:41:47 797

原创 D4-大模型Agent在芯片设计中的实现流程

流程考虑了你的硬件限制(24GB内存)和未安装Ollama的情况,假设你希望从头开始实现。

2025-06-02 13:32:02 1023

原创 Megatron-LM 与 DeepSpeed 分布式训练框架调研文档

Megatron-LM 是 NVIDIA 开发的一个开源分布式训练框架,专为大规模 Transformer 语言模型(如 GPT、BERT、T5)的预训练和微调设计。它通过高效的分布式并行技术,解决了超大模型(数十亿至千亿参数)在内存和计算资源上的瓶颈,广泛应用于自然语言处理(NLP)任务。Megatron-LM 利用 NVIDIA GPU 的高性能计算能力,结合张量并行、流水线并行和数据并行等策略,实现高吞吐量和可扩展性。其核心目标是提供一个灵活、高效的平台,支持学术研究和企业级 AI 应用的模型开发。

2025-05-28 15:48:47 366

原创 P8-大模型微调

微调(Fine-tuning)是指在大规模预训练模型的基础上,使用特定任务或领域的数据对模型进行进一步训练,以提升模型在该任务或领域上的性能。与预训练阶段相比,微调通常使用较小的数据集和较少的训练步数。加载预训练模型和数据集。配置微调参数(如学习率、优化器)。执行微调(全参数微调或PEFT)。训练与验证,监控性能。保存和加载微调后的模型。回顾微调的核心要点。强调框架选择、数据准备与优化策略的重要性。提供进一步学习的资源推荐(如Hugging Face文档、学术论文)。

2025-05-28 11:48:41 903

原创 P7-大规模语言模型分布式训练与微调框架调研文档

本项目使用技术对模型进行微调,以适配自定义数据集(微调过程基于 Hugging Face 的库、peft实现 LoRA,以及modelscope下载模型。脚本支持在 CPU、CUDA 或 MPS 设备上训练,并包含详细的日志记录以便调试和监控。数据集需包含指令-输入-输出格式的对话数据,模型被微调以模仿历史剧角色“甄嬛”的对话风格,如系统提示中所指定。

2025-05-27 22:52:50 1180

原创 CartPole-v1的Deep Q-Network(DQN)实现

本文档描述了一个使用Python实现的Deep Q-Network(DQN)算法,应用于Gymnasium的CartPole-v1环境。代码使用PyTorch构建神经网络,NumPy进行数值计算,Matplotlib进行可视化。目标是通过强化学习训练一个智能体,使其学会控制小车以保持杆的平衡。该实现包括DQN模型、经验回放缓冲区以及带有基本可视化的训练循环。CartPole-v1是一个经典控制问题,智能体通过向左或向右推动小车来保持杆的直立。

2025-05-19 12:47:53 1057

原创 强化学习问题总结

本文总结了针对DQN算法(基于CartPole-v1环境)的几个关键问题,包括经验回放、动作生成、局部最优、探索机制,以及多动作多维动作环境的设计。以下按问题逐一整理核心内容。

2025-05-19 11:24:38 668

原创 YOLOv8 结构与 TVM 性能加速问答

YOLOv8 的 Backbone 有啥特别的地方?: 有没有啥证据证明 YOLOv8 主干网络是这种设计?: 为啥 YOLOv8 的主干网络适合实时目标检测?: 用 TVM 加速 YOLOv8 有啥注意事项?: TVM 优化 YOLOv8 的时候都干了啥?: YOLOv8 主干网络的模型规模有啥选择?: YOLOv8 是个啥模型,主要用来干嘛?: YOLOv8 的主干网络咋优化卷积的?: YOLOv8 的主干网络具体是啥?: YOLOv8 的主干网络具体是啥?: YOLOv8 的结构是咋组织的?

2025-05-14 11:48:01 578

原创 2.目标检测与跟踪在交通场景中

在交通场景中,目标检测与跟踪技术的优化对于提升监控系统的效率和准确性至关重要。本文探讨了优化YOLO模型以高效检测多尺度车辆、多目标跟踪算法(如卡尔曼滤波与DeepSORT)的区别及其在复杂路口场景中的鲁棒性提升策略。通过增加小目标检测头、使用CARAFE特征融合技术和引入NAM注意力机制,YOLO模型在多尺度车辆检测中的精度和实时性得到显著提升。此外,DeepSORT算法通过结合深度外观特征和卡尔曼滤波,在复杂场景中表现出更高的鲁棒性,而UKF和自适应创新协方差的应用进一步增强了跟踪的稳定性。这些技术为交

2025-05-13 20:26:55 667

原创 P6-将 Markdown 文档转换为问答对

本实现利用创建一个用户友好的 Web 界面,允许用户上传 Markdown 文档,通过(使用qwen-turbo模型)生成问答对,并在界面上展示结果。流程包括 Markdown 解析、API 调用、问答对生成和结果展示,优化为技术文档(如 TVM、模型优化)生成技术性问答对。

2025-05-13 11:17:06 640

原创 1-TVM 原理、应用场景、软件架构及算子融合

TVM(Tensor Virtual Machine)是一个开源的深度学习编译器框架,旨在优化机器学习模型在多种硬件平台上的部署。其核心原理是将高级模型表示(如 TensorFlow、PyTorch 模型)编译为针对特定硬件优化的低级代码,实现高效推理。TVM 的工作流程包括前端解析、中间优化、后端代码生成和运行时支持。其优势在于灵活性和硬件无关性,通过自动化调度和算子优化,显著降低手动优化的工作量,同时提升模型推理速度和内存效率。TVM 广泛应用于边缘设备部署、云端推理、异构硬件加速、模型压缩与优化以及

2025-05-12 10:25:40 291

原创 P5-OCR-结合PaddleOCR和LLM的PDF转换工具

是一个基于Python的应用程序,用于将PDF文件中的文本转换为格式良好的Markdown文档。它利用PaddleOCR进行光学字符识别(OCR)从PDF页面中提取文本,并使用Qwen-plus大语言模型将提取的文本结构化为Markdown格式。该应用程序通过Gradio提供了一个用户友好的Web界面,允许用户上传PDF、处理文件并查看生成的Markdown输出。

2025-05-09 14:32:48 1239

原创 P4-GateIO量化交易

本教程将介绍如何使用 Python 实现一个简单的虚拟笔量化交易系统。我们将通过模拟市场数据和交易逻辑,帮助您理解量化交易的基本概念和实现方法。生成虚拟市场数据。实现简单的移动平均策略。生成交易信号并执行交易。回测策略并计算收益。量化交易的核心在于策略设计和数据分析。您可以在此基础上尝试更复杂的策略,如均值回归、动量策略等。

2025-05-07 11:09:43 343

原创 P3-vLLM-安装与使用指南

vLLM 是一个高效的大语言模型(LLM)推理和服务库,针对 GPU 和 CPU 环境进行了优化。本指南详细介绍了 vLLM(0.8.3 版本)的安装步骤、基本使用示例、常见问题排查方法以及进阶配置。

2025-05-07 11:03:23 439

原创 P2-RAG 问答系统 - 基于 PDF 的智能问答工具

是一个基于 Python 的桌面应用程序,结合了 Retrieval-Augmented Generation(RAG)技术和阿里云 DashScope API(Qwen-Plus 模型),通过上传 PDF 文件实现智能问答和多轮对话。这个工具可以从 PDF 中提取文本,构建向量数据库,并利用大语言模型回答用户查询,特别适合需要快速理解文档内容、挖掘知识点的场景,比如学术研究、技术文档分析或教育资料整理。这不仅是一个技术demo,更是一个能帮助你快速消化文档、提取价值的实用工具!

2025-05-06 18:30:42 813

原创 P1-问答数据集生成器-用大模型记录我的人生

问答数据集生成器是一个基于 PyQt5 和阿里云 DashScope API 的桌面应用程序,旨在帮助用户通过大语言模型生成问答数据集,并支持问题生成、答案润色、数据集管理和总结功能。该工具特别适合需要快速构建高质量问答数据集的场景,用于大模型微调。自动生成不重复的问题。输入并润色答案。管理JSON格式的问答数据集。基于历史问答对生成总结或替换个人经历。

2025-05-06 18:15:17 1377

原创 数据结构学习笔记-1.线性表

n个类型相同的数据元素按照顺序组合起来的结构,长度为n若L为线性表,则线性表表示为:L=(a1,a2,a3,…,an)

2023-12-10 22:59:22 383 1

原创 P1-Linux 命令备忘单

(4) 多数用三位八进制数字的形式来表示权限,第一位指定属主的权限,第二位指定组权限,第三位指定其他用户的权限,每位通过4(读)、2(写)、1(执行)三种数值的和来确定权限。(1) mv file1 file2 file3 dir : 把文件file1、file2、file3移动到目录dir中。(2) cp file1 file2 file3 dir :把文件file1、file2、file3复制到目录dir中。(2) mv file1 file2 : 把文件file1重命名为file2。

2020-04-24 17:08:07 207 1

P8-大模型微调-zhenhuan

P8-大模型微调-zhenhuan

2025-05-28

爬虫并保存到表格.py

爬虫保存到表格.py

2021-06-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除