NLP深入学习(五):HMM 详解及字母识别/天气预测用法


0. 引言

前情提要:
《NLP深入学习(一):jieba 工具包介绍》
《NLP深入学习(二):nltk 工具包介绍》
《NLP深入学习(三):TF-IDF 详解以及文本分类/聚类用法》
《NLP深入学习(四):贝叶斯算法详解及分类/拼写检查用法》

1. 什么是 HMM

隐马尔可夫模型(Hidden Markov Model, HMM)是一种统计学习方法,用于描述含有隐藏状态的随机过程。在 HMM 中,系统的当前状态无法直接观测,但可以通过该状态下生成的可观测序列来推断。它由两部分构成:一个不可见的马尔可夫链(即隐藏状态),和每个隐藏状态生成观测值的概率分布。

基本结构与概念:

  1. S S S 隐藏状态(Hidden States): 系统可能处于的一系列状态,通常用 S = S 1 , S 2 , . . . , S N S = S^{1}, S_{2}, ..., S_N S=S1,S2,...,SN 表示,其中 N 为状态的数量。这些状态是不直接可观测的。

  2. O O O 观测序列(Observations): 每个隐藏状态生成一个观测值,观测值构成的时间序列是可见的。例如,在拼写检查器中,观测序列可能是字符序列,而在语音识别中,观测序列可能是声学特征序列。

  3. π \pi π 初始概率分布(Initial Probability Distribution): 定义了系统开始时处于各个状态的概率,记作 π = ( π 1 , π 2 , . . . , π N ) \pi = ( \pi_{1}, \pi_{2}, ..., \pi_{N} ) π=(π1,π2,...,πN),满足 ∑ i = 1 N π i = 1 \sum_{i=1}^{N}\pi_i = 1 i=1Nπi=1

  4. A A A 状态转移概率矩阵(Transition Probability Matrix): 表示从一个状态转移到另一个状态的概率,记作 A = [ a i j ] A = [a_{ij}] A=[aij],其中 a i j a_{ij} aij 是从状态 S i S_i Si转移到状态 S j S_j Sj的概率。满足对于所有 i i i, ∑ j = 1 N a i j = 1 \sum_{j=1}^{N}a_{ij} = 1 j=1Naij=1

  5. B B B 发射概率(Emission Probability): 表示在某个隐藏状态下生成特定观测值的概率,通常定义为条件概率分布 b i ( o k ) b_i(o_k) b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SmallerFL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值