文章目录
1. 前言
前情提要:
《LLM指令微调Prompt的最佳实践(一):Prompt原则
》
《LLM指令微调Prompt的最佳实践(二):Prompt迭代优化》
《LLM指令微调Prompt的最佳实践(三):编写文本摘要的Prompt》
本文根据《面向开发者的LLM入门教程》 ,总结凝练核心内容,加深印象,同时方便快速查阅浏览。
2. Prompt定义
Prompt 是给语言模型提供的输入文本或问题,用于引导模型生成相应的输出或回答。Prompt 可以看作是一个提示或引导,帮助模型理解用户的需求或意图,并生成相关的响应。
主要特点:
(1)引导模型行为:Prompt 用于引导和控制模型的生成行为。通过设计不同的 Prompt,可以让模型生成不同类型的输出,例如回答问题、完成句子、生成故事等。
(2)上下文提供:Prompt 通常包括上下文信息或问题陈述,以帮助模型更好地理解生成任务。例如,给定一段文本让模型续写或提出一个问题让模型回答。
(4)灵活性和适应性:Prompt 可以根据具体任务进行调整和优化,从而提高模型在特定任务上的性能。良好的 Prompt 设计可以显著改善模型输出的质量和相关性。
3. 编写推理的Prompt
3.1 情感推断
3.1.1 情感倾向分析
以一则电商平台上的台灯评论为例,学习如何对评论进行情感二分类(正面/负面)。
Prompt 添加另一个指令:用一个单词回答:「正面」或「负面」,使得输出更加统一,方便后续处理。
lamp_review = """
我需要一盏漂亮的卧室灯,这款灯具有额外的储物功能,价格也不算太高。\
我很快就收到了它。在运输过程中,我们的灯绳断了,但是公司很乐意寄送了一个新的。\
几天后就收到了。这款灯很容易组装。我发现少了一个零件,于是联系了他们的客服,他们很快就给我寄来了缺失的零件!\
在我看来,Lumina 是一家非常关心顾客和产品的优秀公司!
"""
编写Prompt
prompt = f"""
以下用三个反引号分隔的产品评论的情感是什么?
用一个单词回答:「正面」或「负面」。
评论文本: ```{
lamp_review}```
"""
response = get_completion(prompt)
print(response)
正面
3.1.2 识别情感类型
识别出所表达的情感,并