大模型Prompt提问技巧汇总


0. 前言

在平时工作中,如果时常接触 ChatGPT 或者其他大模型,在与大模型沟通、提问时有一些技巧方法,将这种技巧方法提炼出来就是 “Prompt Engineering”。

所谓 “Prompt” 是指一段文本输入,用于引导模型生成相应的文本输出。Prompt 可以看作是给模型的一个初始条件或者指提问,模型会基于这个 Prompt 来生成连贯的、相关的后续文本。

下面主要介绍一些常用的 Prompt 提问技巧,不同的 Prompt 提问适用不同的场景,总有适合你的提问场景。

1. 直接提问的Prompt

  • 描述:简单明了的问题或命令。
  • 适用:最适合获得简洁、真实的信息或直接的答案。
  • 用例:适用于快速查询、事实核查和简单任务。

例子:

问:“法国的首都是哪里?”
回答:“法国的首都是巴黎。”

2. 有上下文的Prompt

  • 描述:提供背景信息或上下文来指导回答。
  • 适用:对于更详细和准确的答案很有用,特别是对于复杂的主题。
  • 用例:非常适合教育内容、解释和详细描述。

例子:

问:“解释光合作用的过程,就像你在教一个高中生一样。”
回答:“光合作用是绿色植物利用阳光制造自己食物的过程……”

3. 角色扮演的Prompt

  • 描述:为 AI 分配一个特定的角色或角色,以生成更量身定制的回答。
  • 适用:对创意写作、模拟对话和互动场景有效。
  • 用例:适用于创意任务、客户服务模拟和讲故事。

例子:

问:“你是一名导游。描述一下在巴黎的一天。”
回答:“欢迎来到巴黎!今天,我们将首先参观埃菲尔铁塔,在那里你可以……”

4. 逐步提示的Prompt

  • 描述:为了清晰起见,将复杂的任务分解为更小、可管理的步骤。
  • 适用:非常适合教学内容、问题解决和过程解释。
  • 用例:适用于教程、指南和程序内容。
### 大模型提示工程技术及最佳实践 #### 提示工程的核心概念 提示工程是一种优化大模型输入的技术,旨在通过设计高质量的 Prompt 来引导模型生成更符合预期的结果。这种技术不仅能够提升模型的表现力,还能显著改善其在特定场景下的实用性[^2]。 #### 常见的提示工程技巧 以下是几种常见的提示工程方法及其应用场景: 1. **思维链提示 (Chain-of-Thought, CoT)** 思维链提示是一种专门针对复杂推理问题的设计方式。它要求模型按照逻辑顺序逐步推导出最终答案,而不是直接给出结论。这种方法特别适合处理多步计算或涉及因果关系的问题[^3]。例如,在解决数学题目时,可以先让模型列出已知条件、分析可能的方法,最后得出解答。 2. **角色扮演提示** 让模型模拟某个具体身份进行对话交流也是一种高效的策略。比如设定为一位经验丰富的医生或者法律顾问来提供专业意见。这样不仅可以增强回复的真实感,还能够让用户更容易理解并接受信息。 3. **指令细化与结构化** 将模糊的需求转化为清晰具体的指导语句同样重要。如果希望获得某种格式化的输出,则应在 prompt 中明确指出期望的形式,如表格、列表或是代码片段等。此外还可以加入一些辅助说明帮助模型更好地把握重点所在[^1]。 4. **负向约束机制** 除了正面描述目标外,也可以引入负面例子作为对比参照物,从而进一步缩小误差范围。即告诉模型哪些内容不应该出现于结果之中,以此减少无关干扰项的影响程度。 #### 构建有效 Prompt 的原则 为了使上述各种技巧发挥最大效用,在实际操作过程中还需要遵循以下几个基本原则: - 明确表达意图:无论是简单查询还是复杂任务都需要尽可能详尽地阐述背景情况以及所求解的内容; - 控制长度适中:过短可能导致上下文缺失而影响判断准确性;反之则会增加不必要的负担降低效率; - 动态调整参数:根据不同类型的请求灵活改变温度值(temperture)、top-p采样比例等相关设置以适应多样化需求情境。 ```python def generate_prompt(task_type, input_data): """ Generate a structured and effective prompt based on the given task type. Args: task_type (str): The category of the task such as 'classification', 'generation' etc. input_data (dict): Dictionary containing all necessary inputs for constructing the prompt. Returns: str: A well-crafted prompt string ready to be fed into large language models. """ base_template = f""" You are an expert {task_type} model designed by top researchers at leading tech companies worldwide. Your mission is now focused solely upon delivering high-quality responses according to user requests below: {input_data['context']} Please follow these instructions strictly when crafting your response: 1. Always prioritize clarity over brevity; 2. Incorporate relevant domain knowledge wherever applicable; 3. Avoid introducing any unsupported assumptions or opinions unless explicitly requested; Now please proceed with generating output accordingly... """ return base_template.format(**input_data) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SmallerFL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值