HuggingFace Transformer库如何在训练时降低GPU显存


0. 引言

Hugging Face Transformers 是一个非常流行的库,用于处理自然语言处理任务。在使用该库进行模型训练时,可能会遇到显存(GPU内存)不足的问题。本文介绍可以尝试的方法来降低显存占用,

1. 减少批次大小 (Batch Size)

批次大小是影响显存占用的主要因素之一。减小批次大小可以显著减少显存消耗,但可能会延长训练时间。

TrainingArguments(
	per_device_train_batch_size=2/4/...  # 每个设备上的训练批次大小
)

如果你有多个GPU,则实际的每轮训练批次大小将是每个设备上的批次大小乘以GPU的数量。

2. 使用 Gradient Accumulation

当你减小了批次大小但仍然希望保持较大的有效批次大小时,可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SmallerFL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值