0. 引言
在使用 Hugging Face 的 transformers
库进行模型训练时,如果你希望忽略某些特殊标签/token的损失计算,可以通过在计算损失时屏蔽特定 token 的贡献来实现的。下面介绍一些方法,仅供参考。
1. 使用 ignore_index
选项
在 transformers
库中,损失计算通常是通过 CrossEntropyLoss
完成的。CrossEntropyLoss
有一个 ignore_index
参数,允许你指定某些 token 的损失不被计算。你可以将特殊标签的索引设置为 ignore_index
,从而忽略这些 token 的损失计算。
示例代码:
假设你有一个特殊的标签 token ID 为 SPECIAL_TOKEN_ID
,需要忽略 loss 计算。
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# 假设你已经加载了模型和tokenizer
model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
# 定义损失函数,忽略SPECIAL_TOKEN_ID的损失
loss_fct = torch.nn.CrossEntropyLoss(ignore_index=SPECIAL_TOKEN_ID)
# 假设 input_ids 和 labels 是你的输入和目标输出
outputs