Huggingface的transformer库如何忽略标签/token的loss计算


0. 引言

在使用 Hugging Face 的 transformers 库进行模型训练时,如果你希望忽略某些特殊标签/token的损失计算,可以通过在计算损失时屏蔽特定 token 的贡献来实现的。下面介绍一些方法,仅供参考。

1. 使用 ignore_index 选项

transformers 库中,损失计算通常是通过 CrossEntropyLoss 完成的。CrossEntropyLoss 有一个 ignore_index 参数,允许你指定某些 token 的损失不被计算。你可以将特殊标签的索引设置为 ignore_index,从而忽略这些 token 的损失计算。

示例代码:
假设你有一个特殊的标签 token ID 为 SPECIAL_TOKEN_ID,需要忽略 loss 计算。

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# 假设你已经加载了模型和tokenizer
model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = AutoTokenizer.from_pretrained("gpt2")

# 定义损失函数,忽略SPECIAL_TOKEN_ID的损失
loss_fct = torch.nn.CrossEntropyLoss(ignore_index=SPECIAL_TOKEN_ID)

# 假设 input_ids 和 labels 是你的输入和目标输出
outputs 
### 变革中的自然语言处理 近年来,随着深度学习技术的发展,Transformers 已经成为解决许多复杂任务的核心工具之一[^4]。尽管 Transformers 并不是一个专门针对 NLP 的单一,但它确实包含了大量用于自然语言处理的功能模块和预训练模型。Hugging Face 提供了一个名为 `transformers` 的 Python ,该不仅支持多种 Transformer 架构(如 BERT、RoBERTa 和 GPT),还提供了丰富的接口以适应各种 NLP 任务。 #### Hugging Face Transformers 中的 NLP 功能 Hugging Face 的 `transformers` 是一个广泛使用的开源项目,它集成了多个流行的 Transformer 模型,并为开发者提供了一套统一的 API 来加载这些模型并执行常见的 NLP 任务。以下是其主要功能: 1. **命名实体识别 (NER)** 使用 `token_classification` 笔记本作为起点,可以轻松调整代码以完成特定于项目的 NER 实现[^3]。 2. **情感分析** 基于预训练的语言模型,能够快速微调以检测文本的情感倾向。 3. **机器翻译** 利用像 MarianMT 或 mBART 这样的多语言模型实现高质量的自动翻译服务。 4. **问答系统** 支持抽取式 QA 和生成式 QA,适用于构建智能客服或其他交互应用。 5. **摘要生成与文本总结** 自动生成简洁明了的文章概要或者新闻标题等功能也得到了良好支持。 6. **其他高级特性** 包括但不限于句法解析(Syntactic Parsing),语义角色标注(Semantic Role Labeling, SRL)等更复杂的子领域研究方向。 值得注意的是,虽然上述提到的任务都可以借助此框架下的某些组件来达成目标,但是具体到每一个细分场景下可能还需要额外的数据准备以及参数调节等工作量投入才能达到理想效果。 下面给出一段简单的例子展示如何利用 HuggingFaceTransformers 加载一个基础版本的 BERT 模型来进行分类预测操作: ```python from transformers import BertTokenizer, BertForSequenceClassification import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased') inputs = tokenizer("Hello world!", return_tensors="pt") labels = torch.tensor([1]).unsqueeze(0) outputs = model(**inputs, labels=labels) loss, logits = outputs[:2] print(logits) ``` 以上脚本片段展示了基本的工作流程——先实例化 tokenzier 对象再传入待测字符串得到编码后的张量形式输入给后续网络结构计算最终输出概率分布向量。 --- ### 结论 综上所述,现代意义上的 “NLP Libraries Included In Transformer Library” 更倾向于指代那些基于 Transformer 技术栈开发出来的综合性解决方案集合体而非传统意义上独立存在的专用软件包概念;而其中最具代表性的当属来自 HuggingFace 社区维护更新活跃度极高的同名官方发行版产品线系列作品群组其中之一成员即为此处讨论对象本身所指向的那个具体事物个体存在形态表现形式呈现方式体现出来的东西罢了!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SmallerFL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值