流水线并行(Pipeline Parallelism)原理详解


0. 概览

数据并行(Data Parallelism):在不同的GPU上运行同一批数据的不同子集;

流水并行(Pipeline Parallelism):在不同的GPU上运行模型的不同层;

模型并行(Model Parallelism):将单个数学运算(如矩阵乘法)拆分到不同的GPU上运行;

流水线并行(Pipeline Parallelism)是一种在分布式计算环境中实现模型并行的技术,主要用于深度学习领域,特别是在处理大规模神经网络模型时。通过将模型的不同部分(如神经网络的层)分配到不同的计算节点上,流水线并行能够在不牺牲训练效率的情况下,利用集群中的多台机器共同完成模型训练。

数据并行参考:
《训练中的数据并行DP详细讲解》

1. 简单流水并行

我们将模型拆分成多个部分,并将每个部分分配给一个 GPU。然后,我们在小批量上进行常规训练,在拆分模型的边界处插入通信步骤。

我们以 4 层顺序模型为例:
o u t p u t = L 4 ( L 3 ( L 2 ( L 1 ( i n p u t ) ) ) ) output=L_4(L_3(L_2(L_1(input)))) output=L4(L3(L2(L1(input))))

我们将计算划分到两个 GPU 上,如下所示:

  • GPU1 计算:

i n t e r m e d i a t e = L 2 ( L 1 ( i n p u t ) ) intermediate = L_2(L_1(input)) intermediate=L2(L

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SmallerFL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值