深度学习的知识蒸馏:Distilling the Knowledge in a Neural Network


1. 概览

《Distilling the Knowledge in a Neural Network》 是一篇关于知识蒸馏(Knowledge Distillation)技术的重要论文,由 Hinton 等人于2015年提出。这篇论文详细介绍了如何将一个大型的、复杂的机器学习模型(教师模型)的知识转移到一个较小的模型(学生模型)中,从而使小模型能够在保留大部分性能的同时拥有更高的效率。

2. 主要思想

知识蒸馏的核心思想是利用教师模型的软标签(soft labels)来训练学生模型。这里的软标签(soft labels)是指教师模型对输入数据预测的概率分布,传统的硬标签(hard labels)是指真实的分类标签。
在这里插入图片描述

2.1 软标签(Soft Labels)

教师模型对输入样本的预测输出是一个概率分布,而不是单一的类别标签。这种概率分布包含了教师模型对于各个类别的置信度,比硬标签提供了更多关于类间关系的信息。

2.2 温度参数(Temperature Parameter)

为了使概率分布更加平滑,引入了一个温度参数 T T T,它可以放大或缩小教师模型输出的 softmax 函数的值。
q i = e z i T ∑ e z i T q_i = \frac{e^{\frac{z_i}T}}{\sum e^{\frac{z_i}T}} qi=eTzi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SmallerFL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值