大语言模型LLM基础扫盲速通版


1. 什么是LLM?

LLM 是“大型语言模型”(Large Language Model)的缩写。它指的是使用深度学习技术训练出来的,具有大规模参数量的语言处理模型。这些模型通常在互联网上的大量文本数据上进行训练,以学习自然语言的模式和结构。训练后的 LLM 能够执行各种自然语言处理任务,如文本生成、机器翻译、问答系统、摘要生成、情感分析等。

当我们说人类语言时,不仅仅指中文、英语或法语等,人类语言还延伸到:

  • 摩尔斯电码
  • 遗传密码
  • 象形文字
  • 加密
  • 手语
  • 肢体语言
  • 乐谱
  • 化学信号
  • 表情符号和符号
  • 动物交流
  • 触觉通信
  • 交通标志和信号
  • 数学方程
  • 编程语言

LLM 经过数百、数千亿、甚至数万亿个参数的训练,能够从广泛的数据源中学习到规律。

这种广泛的训练使他们能够根据收到的输入预测和生成文本,以便他们可以参与对话、回答查询甚至编写代码。

2. LLM如何工作?

大型语言模型使用神经网络和机器学习 (ML) 的混合。正是这种混合使得该技术能够首先处理然后生成原始文本和图像。神经网络是 LLM 的大脑。这些网络从大量数据中学习,随着接触更多数据而不断进步。

随着模型接受更多数据的训练,它会学习语言的模式、结构和细微差别。这就像同时教它语法规则、诗歌节奏和技术手册的术语一样。

然后,机器学习模型帮助模型根据句子前面的单词预测下一个单词。这个过程重复了无数次,提高了模型生成连贯且上下文相关的文本的能力。

LLM 现在采用 Transformer 架构,该架构允许模型查看并权衡句子中不同单词的重要性,这与我们阅读句子并寻找上下文线索来理解其含义时的情况相同。

虽然 LLM 可以生成原创内容,但其输出的质量、相关性和创新性可能会有所不同,需要人工监督和改进。

3. LLM开发的关键里程碑

大型语言模型并不总是像今天这样有用。随着时间的推移,它们得到了很大的发展和迭代。

让我们回顾一下 LLM 历史上的一些关键时刻。这样你就可以了解他们取得了多大的进步,以及与几十年的缓慢进步相比,过去几年的快速发展。

(1)2010 年之前:早期基础

1950 年代至 1970 年代:早期的人工智能研究为自然语言处理奠定了基础。最著名的是,名为“Eliza”的技术人员是世界上第一个聊天机器人。

1980 年代至 1990 年代:NLP 统计方法的发展,逐渐摆脱基于规则的系统。

(2)2010 年:初始模型

2013 年推出了 word2vec,这是一种计算词语向量表示的工具,通过捕捉词语的语义,显著提高了 NLP 任务的质量。

(3)2014-2017:RNN 和注意力机制

2014 年:序列到序列 (seq2seq) 模型和循环神经网络 (RNN) 在机器翻译等任务中变得流行。

2015年:引入注意力机制,提高神经机器翻译系统的性能。

2017年:《Attention is All You Need》论文中提出了Transformer模型,以对序列的高效处理为NLP任务树立了新的标准。

(4)2018 年:GPT 和 BERT 的出现

2018 年 6 月:OpenAI 推出 GPT(生成式预训练变压器),这是一种利用无监督学习生成连贯且多样化文本的模型。

2018 年 10 月:Google AI 推出 BERT(来自 Transformers 的双向编码器表示),它使用 Transformer 模型的双向训练来提高对语言上下文的理解。

(5)2019-2020:更大、更强大的类型

2019 年:推出 GPT-2,这是 GPT 的改进版本,具有 15 亿个参数,展示了该模型在扩展段落中生成连贯且上下文相关的文本的能力。

2020 年:OpenAI 发布 GPT-3,这是一个拥有 1750 亿个参数的更大模型,在生成类似人类的文本、翻译和回答问题方面表现出卓越的能力。

(6)2021-2023:LLM的专业化、多模态性和民主化

2021-2022:开发专门的模型,例如用于对话应用程序的 Google LaMDA 和用于开放预训练变压器的 Facebook

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SmallerFL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值