DeepSeek 训练提到的Auxiliary-Loss-Free Load Balancing是什么?


1. 前言

近年来,混合专家模型(Mixture-of-Experts, MoE) 因其在扩展大模型参数量时的高效性备受关注。MoE 通过动态路由机制将输入分配给不同的专家网络,从而在保持计算成本可控的前提下提升模型性能。然而,MoE 训练中一个关键挑战是负载均衡——某些专家可能被过度使用,而其他专家则被冷落。这不仅会导致计算资源的浪费(如部分设备闲置),还可能引发路由崩溃(Routing Collapse),即模型仅依赖少数专家,无法充分利用所有专家能力。

传统解决方案通过引入辅助损失(Auxiliary Loss) 强制均衡专家负载,但这种方法存在明显缺陷:辅助损失会向模型注入干扰梯度,与主任务(如语言建模)的优化目标冲突,导致模型性能下降。为此,本文提出了一种全新的无辅助损失负载均衡策略(Loss-Free Balancing),通过动态调整路由得分偏置(Bias)实现负载均衡,同时避免引入额外梯度干扰。实验表明,该方法在1B和3B参数规模的MoE模型上均取得了更优的负载均衡效果和模型性能。

原文:https://arxiv.org/html/2408.15664v1

2. MoE架构与负载均衡的挑战

2.1 MoE的基本原理

在 Transformer 架构中,MoE 层通常替换标准的 MLP 层。每个 MoE 层包含多个专家网络(如64个 FFN),输入 Token 通过 Top-K 路由机制选择 K 个专家(如K=2)。具体计算流程如下:

  • 路由得分计算:输入 Token 的隐状态通过门控函数(如 Sigmoid 或 Softmax )生成各专家的路由得分 s i , t s_{i,t} si,t
  • Top-K 选择:选取得分最高的 K 个专家,将其输出加权求和得到最终结果。

2.2 传统方法的局限性

传统方法通过辅助损失控制负载均衡。例如,定义损失项:
L Balance = α ∑ i = 1 N f i P i \mathcal{L}_{\text{Balance}} = \alpha \sum_{i=1}^N f_i P_i LBalance=αi=1N

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SmallerFL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值