- 博客(420)
- 资源 (6)
- 问答 (2)
- 收藏
- 关注
原创 Hessian矩阵在多元泰勒展开中如何用于构造优化详解
minx∈Rnfxx∈Rnminfx假设fxfx在邻域内具有二阶连续偏导数(即可进行泰勒二阶展开)。元素含义Hessian描述函数的局部“曲率”,越接近正定越利于优化泰勒展开二阶项构造了 Newton 方法更新公式的基础牛顿法本质是用一个二阶近似模型最小化原函数优缺点二次收敛 vs. 高计算量(尤其在高维空间)
2025-07-15 17:45:12
75
原创 C++中static关键字全面详解和实战示例
public:// 编译期常量,C++11起支持// C++17起支持类内定义// ✅ 可用于编译期常量表达式cout << "程序名称: " << Config::app_name << endl;return 0;程序名称: MyApp要点可用于数组大小、模板参数等编译期上下文。C++17 起支持类内初始化,无需类外定义。应用场景是否线程安全是否支持编译期常量说明局部 static 单例✅(C++11 起)❌初始化一次,延迟构造模板类 static 成员类型隔离。
2025-07-15 10:14:20
237
原创 PyTorch张量(Tensor)创建的方式汇总详解和代码示例
方法说明是否可指定 dtype/device从数据创建张量✅全为 0✅全为 1✅全为指定值✅均匀分布 [0, 1)✅标准正态分布✅随机整数✅单位矩阵✅区间整型值序列✅区间等间隔浮点数✅未初始化张量✅NumPy 转张量❌(dtype 不可变)张量转 NumPy❌(仅 CPU 张量)
2025-07-14 22:56:21
320
原创 SVD算法详解和纯C++代码实现
设有一个实矩阵A∈Rm×nA∈Rm×nAUΣVTAUΣVTU∈Rm×mU∈Rm×m:列正交矩阵(左奇异向量)Σ∈Rm×nΣ∈Rm×n:对角矩阵(奇异值矩阵)V∈Rn×nV∈Rn×n:列正交矩阵(右奇异向量)Σdiagσ1σ2σrΣdiagσ1σ2...σr,其中σi≥0σi≥0,且按降序排列。
2025-07-14 15:57:18
768
原创 C++中正则表达式详解和实战示例
类名功能描述std::regex用于存储正则表达式模式用于存储匹配结果(string 匹配)用于存储匹配结果(C字符串匹配)判断整个字符串是否匹配正则模式判断字符串中是否有匹配正则的部分替换匹配的字符串内容场景推荐正则日志提取或带时间戳的模式文件筛选`.*.(txtlog)$`邮箱验证手机号验证密码验证。
2025-07-14 10:05:12
325
原创 二叉树算法详解和C++代码示例
方向推荐算法题遍历操作先中后序,层序递归思维深度、路径和、翻转、判断 BST搜索最近公共祖先、寻找节点路径构造树根据前序+中序建树、序列化反序列化优化技巧剪枝、缓存、DFS+回溯。
2025-07-13 20:00:51
437
原创 C++中std::set使用详解和综合示例
/ 降序技巧用法*s.begin()最小值最大值删除指定元素找到第一个 ≥ x 的元素找到第一个 > x 的元素使用multiset解决重复元素问题。
2025-07-13 19:54:17
307
原创 Python中类静态方法:@classmethod/@staticmethod详解和实战示例
场景推荐方法需要访问或修改实例属性实例方法需要访问或修改类变量、类构造类方法工具函数:与类相关但不访问类或实例成员静态方法。
2025-07-11 17:12:13
322
1
原创 霍夫变换(Hough Transform)算法原来详解和纯C++代码实现以及OpenCV中的使用示例
霍夫变换(Hough Transform)是一种经典的,广泛用于,例如直线、圆、椭圆等。其核心思想是将图像空间中的“点”映射到参数空间中的“曲线”,从而将。
2025-07-11 13:56:27
329
原创 PyTorch中torch.eq()、torch.argmax()函数的详解和代码示例
下面对 PyTorch 中常用的两个函数torch.eq()和的,包括以及。
2025-07-10 10:19:09
476
原创 泰勒展开(Taylor Expansion)详解以及在工程实践(SLAM)中的应用实例
项目内容使用条件非线性函数可微,输入误差较小(局部线性近似有效)优点计算快速,适合高频状态估计(如 IMU 融合)局限线性化误差大时不准,需二阶或采样方法(如 UKF、蒙特卡洛)常用工具雅可比矩阵、协方差传播、残差线性化内容表达式作用一阶泰勒展开fx≈fx0∇f⊤Δxfx≈fx0∇f⊤Δx一阶近似二阶泰勒展开加上12Δx⊤HΔx21Δx⊤HΔx曲率控制精度更高极值判断。
2025-07-09 17:34:59
1071
原创 Python中__str__, __repr__, __len__, __getitem__详解和代码示例
lenitems")"else:print(i) # 输出 3 4 5 6方法名用于作用时调用删除某个元素方法名功能示例操作获取元素obj[key]设置元素删除元素是否包含某元素x in obj__len__获取长度len(obj)__iter__迭代器入口__next__获取下一个迭代元素next(obj)(迭代器)__str__字符串表示(用户友好)print(obj)__repr__字符串表示(调试用)repr(obj)
2025-07-09 15:37:09
239
1
原创 boost中boost::math::cdf累积分布函数(Cumulative Distribution Function CDF)使用详解和实战示例
场景Boost 分布用法常用函数双侧 t 检验cdfquantile二项分布置信区间beta(a, b)quantile残差分布异常概率估计cdf。
2025-07-09 10:27:18
299
原创 TensorFlow 和PyTorch的全方位对比和选择建议
用户类型推荐框架原因AI 初学者PyTorch简单清晰,像写 NumPy,调试直观科研人员PyTorch动态图好调试,社区论文支持强工程部署TensorFlowTensorFlow Serving + Lite 更强跨平台开发者TensorFlow支持 Web、移动、嵌入式部署模型优化研究者二者皆可PyTorch(),TF(XLA)选 PyTorch;选 TensorFlow。
2025-07-08 21:49:06
1059
原创 boost中boost::noncopyalbe和boost::ignore_unused的使用详解和实战示例
特性作用禁止拷贝构造与赋值消除未使用变量的警告用法用作基类调用函数并传入未使用变量场景单例、资源管理类、不应复制的类型占位参数、模板代码、条件编译等替代方法(C++11)= delete构造函数或所属头文件用法Boost 中具体例子解决问题strand禁止资源类被拷贝,避免资源泄露或状态错误条件编译、测试代码、模板接口、占位参数编译期无警告、保证接口一致、跨平台兼容性。
2025-07-08 21:36:00
480
原创 Eigen中Isometry3d的使用详解和实战示例
/ 表示一个 SE(3) 类型的刚性变换double表示浮点数精度;3表示三维空间;Isometry表示保持距离和角度不变的变换(旋转 + 平移,非仿射变换)。
2025-07-08 14:32:37
340
原创 Python中os.path和pathlib模块路径操作函数汇总
import ospath = os.path.expanduser(path) # 展开用户目录abs_path = os.path.abspath(path) # 转为绝对路径dir_name = os.path.dirname(abs_path) # 提取目录名file_name = os.path.basename(abs_path) # 提取文件名name, ext = os.path.splitext(file_name) # 拆分扩展名。
2025-07-08 09:28:26
346
原创 PCL点云库入门(第22讲)——PCL库点云特征之RIFT 局部特征描述Rotation Invariant Feature Transform descriptors(RIFT)
RIFT(轮换不变特征变换)最初由 Chao Dong 等人在 2009 年提出,用于多模态图像匹配。与 SIFT 的“方向归一化”思路不同,RIFT 通过相对梯度方向直方图建立旋转不变性,无需估计关键点主方向。随后该思想被推广到 3 D 点云(PCL 中的下面以二维灰度图像为例讲述原理,再说明其扩展到 3 D 的要点。特性描述旋转不变性只考虑梯度方向与径向方向的夹角尺度敏感邻域半径需调参,固定尺度对噪声鲁棒性一般梯度方向对噪声较敏感适合反射强度丰富数据如激光雷达点云中的 intensity 字段。
2025-07-07 21:50:33
1563
原创 SLAM文献之Efficient and Consistent Bundle Adjustment on Lidar Point Clouds(BALM)
束调整(Bundle Adjustment,简称 BA)是同时优化传感器姿态与场景几何的核心问题,广泛应用于机器人视觉系统。本文提出了一种高效且一致的激光雷达束调整方法,该方法充分利用激光雷达中的边缘与平面几何特征,通过直接最小化原始点到对应几何特征的欧氏距离来表述优化问题。该方法的一个关键创新在于:几何特征(如边缘和平面)可以解析求解,从而消除其在优化中的显式表示,仅保留激光雷达位姿作为优化变量,大幅降低维度。为了进一步提升效率,本文引入了 **点簇(Point Clusters)**的概念:通过一组紧凑
2025-07-07 14:21:26
1195
原创 深入解析C++中 std::sort背后的实现原理 —Introsort(Introspective Sort)
Introsort是一种混合排序算法算法用于特点快速排序通常情况平均时间复杂度 O(n log n)堆排序当快速排序退化(递归过深)时最坏时间复杂度 O(n log n)插入排序小规模数组时(如长度 ≤ 16)常数开销小,快属性最好时间复杂度O(n log n)平均时间复杂度O(n log n)最坏时间复杂度O(n log n)空间复杂度O(log n) 递归栈是否稳定排序❌ 否技术点用法小区间处理,避免快排递归开销heapSort。
2025-07-07 09:42:33
387
原创 PyTorch中 item()、tolist()使用详解和实战示例
场景推荐使用获取 loss 值进行日志记录将输出转为 NumPy 作可视化保存预测结果为 JSON/CSV转换嵌套张量为 Python 数据结构.tolist()模型调试时避免梯度追踪.detach()
2025-07-05 15:22:15
740
1
原创 数学中多元函数微分(偏导与全微分)
d2f∂2f∂x2dx22∂2f∂x∂ydxdy∂2f∂y2dy2d2f∂x2∂2fdx22∂x∂y∂2fdxdy∂y2∂2fdy2多元泰勒展开;极值判断(二阶充分条件);曲面曲率研究等。名称表达式含义偏导∂f∂x∂x∂f单变量变化率全微分df∑∂f∂xidxidf∑∂xi∂fdx。
2025-07-05 14:46:15
849
原创 数学中微分与导数的理解和区别
设函数yfxy = f(x)yfx,在点xxx附近有一个微小的增量Δx\Delta xΔxΔyfxΔx−fxΔyfxΔx−fxf′xlimΔx→0ΔyΔxf′xΔx→0limΔxΔy存在,则称函数在xxx处可导,此极限值为导数。若函数yfxy = f(x)yfx在点xxxdyf′x⋅dxdyf′x⋅dxdxdxdx。
2025-07-04 17:56:26
930
原创 Eigen 中 Transform类详解和实战示例
Scalar:标量类型,如floatdouble。Dim:维度,一般是2或3。Mode:变换类型,一般使用默认Affine(仿射变换),也可选Isometry(保持旋转+平移不改变尺度),Projective等。常用定义:构造方式示例说明默认构造未初始化,需调用单位变换构造创建单位矩阵矩阵构造用矩阵初始化旋转和平移构造用旋转四元数和平移向量构造拷贝构造用同类型对象拷贝模板转换构造类型转换#include <Eigen/Geometry> // 包含 Transform。
2025-07-04 15:15:57
488
原创 C++中std::next_permutation / prev_permutation使用详解和实战代码示例
/ 在 <algorithm> 中使用场景推荐方法所有排列(全排列)(效率高)自定义顺序、剪枝DFS(灵活)组合问题01数组 +第 K 个排列数学 + 阶乘推导,或 next_permutation有重复元素去重排列sort + next_permutation(自动跳过重复)
2025-07-04 11:16:11
350
原创 Pytorch中expand()和repeat()函数使用详解和实战示例
特性expand()repeat()是否复制内存❌ 否,仅创建视图✅ 是,真正复制数据是否支持广播✅ 只能在维度为 1 的轴广播❌ 直接复制,不依赖维度是否为1内存开销小(共享内存)大(复制数据)灵活性限制多,效率高更灵活但效率低常用于场景batch 中广播参数、掩码构造等构造 tile 模式张量、数据重复场景操作函数原因expand()避免内存复制,适合广播掩码图像 tile 复制repeat()必须真实复制图像内容expand。
2025-07-03 22:32:38
1156
原创 Gaussian Splatting + Texture神经渲染研究前沿
技术方向描述状态图像生成模型引入纹理如使用 SD/GAN 提供细节纹理主流研究方向绑定高斯与 UV / 局部纹理图每个高斯点对应纹理块或纹理编码可实时渲染可控性与编辑性增强支持用户驱动纹理修改正在增强跨视角一致性损失保证纹理渲染在不同视角下对齐活跃研究实时与高质量平衡提升速度同时保持纹理质量GARField 是代表作项目描述创新点用纹理 + 高斯提升视觉质量和控制性技术路径高斯渲染 + 显式/神经纹理建模 + 一致性优化仍在解决的问题多视角一致性、编辑控制性、实时效率平衡未来方向。
2025-07-03 16:38:06
791
原创 C++中std::function详解和实战示例
场景描述回调机制可存储传入的回调函数(例如事件触发、完成通知)异步任务调度用作任务队列中的任务封装策略模式在运行时动态替换策略行为(如算法接口)通用函数接口支持用户传入任意处理逻辑,提高系统模块化应用用法类型线程池封装任意任务事件系统注册/触发事件响应回调插件接口动态注册功能实现或更复杂结构。
2025-07-03 11:01:42
542
原创 Pytorch中torch.where()函数详解和实战示例
场景用法示例条件替换去除负值/NaN/0多分类掩码处理找到满足条件的索引广播与标量搭配。
2025-07-02 22:01:18
914
原创 纹理贴图算法研究论文综述
纹理贴图算法正从传统的基于几何映射方法逐步迈向融合视觉 SLAM、图优化和深度学习的智能化流程。高质量实时纹理合成面向 VR/AR 的低延迟高压缩纹理流结合神经场(NeRF/GS)和传统纹理映射的混合方法多模态输入(LiDAR+RGB)下的纹理重建。
2025-07-02 17:24:10
907
原创 c++中std::condition_variable、wait_for() 和 wait_until()的使用详解和示例
生产者-消费者模型;等待某一条件满足(例如缓冲区不为空);实现线程阻塞、解阻塞机制;控制线程顺序执行。wait_for是等待相对时间,适合写成固定超时逻辑;wait_until是等待绝对时间点,适合调度定时任务;永远使用谓词版本()来避免虚假唤醒;返回值可以判断是超时还是正常唤醒。
2025-07-02 10:09:14
403
原创 GTSAM中自定义因子图详解和实战示例
以一个二维误差、一个变量的因子public:// 残差函数if (H) {// 计算残差对 pose 的雅可比矩阵*H = ...;
2025-07-01 17:17:45
390
原创 AKAZE(Accelerated-KAZE)图像特征点检测算法详解和C++代码实现示例
AKAZE 是在KAZE 特征算法基础上,将非线性扩散尺度空间与 **M-LDB(二值描述子)**结合,采用加速非线性扩散结构,同时保持尺度与旋转不变性,并实现高效匹配。AKAZE 使用非线性扩散尺度空间 + FED 加速,保留边缘信息;检测 Hessian 极值,计算主方向后生成 M-LDB 二值描述;适合资源较紧但需要尺度/旋转不变的场景。
2025-07-01 15:30:51
851
原创 C++中std::atomic_bool详解和实战示例
是 C++ 标准库中提供的一种,用于在多线程环境下对布尔值进行,避免使用std::mutex带来的性能开销。
2025-07-01 10:26:23
333
原创 ROS1/ROS2 中常用命令详解和代码示例
下面是,包含以及。这些命令适用于日常开发、调试、可视化、数据回放等任务,涵盖话题、节点、服务、参数、bag 录制等内容。
2025-06-30 22:59:48
418
原创 PCL点云库入门(第21讲)——PCL库点云特征之RSD特征描述Radius-based Surface Descriptor(RSD)
对每个点。
2025-06-30 22:38:37
1632
原创 Eigen中transposeInPlace()和transpose()的使用详解和示例代码
特性类型成员函数成员函数返回值返回转置副本无返回值是否修改原矩阵❌ 否(保留原矩阵)✅ 是(原地转置)适用于方阵✅✅适用于非方阵✅❌ 仅适用于方阵使用场景保留原始数据,创建新矩阵需要节省内存,原地修改矩阵➜ 返回副本,不修改原矩阵,适用于所有维度。➜ 原地转置,仅限方阵,节省内存。非方阵请勿使用。可与memcpy配合用于与 OpenGL / DirectX / 自定义矩阵格式对接。
2025-06-30 15:23:04
314
2
Qt Widgets 使用例子,覆盖常见控件和用法,适合刚入门 Qt 的开发者参考
2025-04-28
Cmake软件3.15和3.22版本
2025-04-20
Qt+PCL自编译PCL点云库,编译VTK(9.1.0)+Qt(5.15.2),可以将PCL库中的 pcl::visualization::PCLVisualizer用于在Qt中实现点云数据的可视化
2025-04-19
图像/点云非刚性检测和配准-非刚性检测,非刚性增强现实,实时可变形配准
2025-03-26
SLAM技术详解及其项目应用场景与优化方案
2024-10-31
Opencl入门学习例子
2020-12-04
opencv-3.1.0+opencv_contrib-3.1.0+ippicv_windows_20151201
2018-05-16
TA创建的收藏夹 TA关注的收藏夹
TA关注的人