集成学习-蒸汽量预测案例

在这里插入图片描述

本文参考资料:https://github.com/datawhalechina/team-learning-data-mining/tree/master/EnsembleLearning

集成学习案例:蒸汽量预测集


1.数据信息

数据分成训练数据(train.txt)和测试数据(test.txt),其中字段”V0”-“V37”,这38个字段是作为特征变量,”target”作为目标变量。我们需要利用训练数据训练出模型,预测测试数据的目标变量。

2.评价指标

最终的评价指标为均方误差MSE。

3 数据处理


(1)探索数据分布
对于连续分布的传感器的数据,使用 kdeplot(核密度估计图) 进行数据的初步分析,即EDA。核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一。通过核密度估计图可以比较直观的看出数据样本本身的分布特征。
(2)画出热力图(sns.heatmap),查看特征之间的相关性。然后进行进行降维操作(将相关性的绝对值小于阈值的特征进行删除)和归一化操作。
(3) 特征工程
绘图显示B

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GoAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值