FPN:Feature Pyramid Networks for Object Detection

本文介绍FPN(Feature Pyramid Network),一种利用深度卷积网络构建的特征金字塔,有效解决不同尺度目标检测问题。通过自顶向下和横向连接融合特征,FPN在Faster R-CNN和Fast RCNN等检测器上显著提升了性能,特别是在小目标检测上。FPN的关键创新在于其自顶向下的路径和侧向连接,提供多尺度特征并减少计算成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

  • 特征金字塔可用于检测不同尺度目标,但最近的深度学习目标检测器避免使用它,部分原因是它带来了极大的计算量和内存需求

  • 本文利用深度卷积网络内在的多尺度、金字塔分级来构造具有很少额外成本的特征金字塔

  • 本文开发了一种具有横向连接的自顶向下架构,称为特征金字塔网络(FPN),用于在所有尺度上构建高级语义特征映射

  • 将FPN应用于一些目标检测器(如Faster R-CNN),结果得到了显著的改进

二、模型与方法

2.1 模型对比

在这里插入图片描述
图中:feature map用蓝色边框表示,边框越粗,表示其语义特征越强

(a) Featurized image pyramid
操作:

  • 使用图像金字塔构建特征金字塔
  • 每个尺度的图像的featue map都是独立计算的

结果:

  • 计算量大,内存消耗太大
  • 速度很慢

(b) Single feature map
操作:

  • 通过深层卷积得到最终的单一尺度的feature map
  • 只利用最终得到的feature map进行检测

结果:

  • 计算量少,检测速度也很快
  • 得到的语义特征比较单一
  • 对小目标特征提取的太少,导致小目标的检测效果不好

说明:分类任务中还有大部分早期目标检测都是使用这种结构,如YOLOv1,Faster RCNN

(c) Pyramidal feature hierarchy
操作:

  • 保存前向传播时每一个卷积层输出的featrue map
  • 重新使用这些保存的feature map进行预测

结果:

  • 卷积输出结果一般都会保存下来,所以重用它们几乎是零计算量的
  • 对小目标的检测效果依然不好

说明:该结构的典型代表就是SSD目标检测模型,但是SSD是从网络最高层开始构建金字塔,没有使用较低层的卷积层输出的feature map,即高分辨率的feature map(后证明这些对于检测小目标很重要)

(d) Feature Pyramid Network
操作:

  • 将低分辨率、强语义的特征与高分辨率、弱语义的特征通过自顶向下的路径和横向连接相结合

结果:

  • 输出结果是一个特征金字塔,每一层的feature map都具有丰富的语义
  • 可以用来代替(a)这种结构,同时不牺牲表征能力,速度或者内存

2.2 设计思路

卷积神经网络前向传播的过程中,每一层输出的feature map的从结果上来看就是一个特征金字塔

所以,本文很自然地利用了卷积神经网络输出多层次的feature map,并且在同时构建一个在所有尺度上都具有强大语义的特征金字塔,从而形成一个特征金字塔网络(Feature Pyramid Network)

2.3 FPN(Feature Pyramid Network)

在这里插入图片描述
FPN包括两个部分:

  • 自顶而上的过程
  • 自顶而下和侧向连接的融合过程

2.3.1 自顶而上的过程

自顶而上的过程就是卷积神经网络前向传播的输出不同尺度的feature map的过程。

在FPN中:

  • 按输出的feature map的大小,将卷积层划分为不同的stage
  • 每个stage之间的feature map大小比例相差为2
  • 每个stage对应特征金子塔中的一个level
  • 每个stage的最后一个feature map被选为对应特征金字中想要level的特征

在这里插入图片描述
以ResNet为例,选取conv2、conv3、conv4、conv5层的最后一个残差block输出的feature map作为特征金字塔对应level的特征,记为{C2、C3、C4、C5}。这几个特征层相对于原图的步长分别为4、8、16、32。此外,考虑到内存占用问题,没有将conv1包含在金字塔中。

2.3.2 自顶而下和侧向连接的融合过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值