Python笔记

这篇笔记涵盖了Python的数据操作,包括pyqt5中使用GraphicsView显示图片、图片转换、pandas创建Dataframe、安装本地库文件、数据写入sheet、鸢尾花数据集分析。还介绍了如何在DataFrame中插入列、更新Python库、表示解包以及matplotlib的图形旋转和图例位置设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pyqt5中使用GraphicsView显示图片

 def show_selected_image(self, image):

        height = image.shape[0]
        width = image.shape[1]
        ratio = float(height / width)
        new_height = 300
        new_width =  int(300 / ratio)
        img = cv2.resize(image, (new_width, new_height))


        frame = QImage(img, new_width, new_height, QImage.Format_RGB888)
        pix = QPixmap.fromImage(frame)
        self.item = QGraphicsPixmapItem(pix)
        self.scene = QGraphicsScene()  # 创建场景
        self.scene.addItem(self.item)
        self.graphicsView.setScene(self.scene)

Python 图片转数组,二进制互转操作

https://www.jb51.net/article/207138.htm

import matplotlib.pyplot as plt
import cv2
from PIL import Image
from io import BytesIO
import numpy as np
# 图片转numpy数组
img_path = "images/1.jpg"
img_data = cv2.imread(img_path)
#numpy数组转图片
img_data = np.linspace(0,255,100*100*3).reshape(100,100,-1).astype(np.uint8)
cv2.imwrite("img.jpg",img_data) # 在当前目录下会生成一张img.jpg的图片
# 以 二进制方式 进行图片读取
with open("img.jpg","rb") as f:
 img_bin = f.read() # 内容读取

# 将 图片的二进制内容 转成 真实图片

with open("img.jpg","wb") as f:
 f.write(img_bin) # img_bin里面保存着 以二进制方式读取的图片内容,当前目录会生成一张img.jpg的图片

"""
以上两种方式"合作"也可以实现,但是中间会有对外存的读写
一般这些到磁盘的IO操作还是很耗时间的
所以在内存直接处理会较好
"""

#将数组转成 图片的二进制数据

img_data = np.linspace(0,255,100*100*3).reshape(100,100,-1).astype(np.uint8)
ret,buf = cv2.imencode(".jpg",img_data)
img_bin = Image.fromarray(np.uint8(buf)).tobytes()

#将图片二进制数据 转为数组

img_data = plt.imread(BytesIO(img_bin),"jpg")
print(type(img_data))
print(img_data.shape)

"""
out:
<class 'numpy.ndarray'>
(100, 100, 3)
"""
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import rcParams

matplotlib.use('pgf')
pgf_config={
   
   
    "font.family":"serief",
    "font.size":20,
    "pgf.rcfonts":False,
    "text.usetex":
### Python 笔记 Markdown 格式 学习资料 #### 使用 Markdown 编辑 Python 笔记的优势 Markdown 的语法非常简洁,适合编写技术文档和技术笔记。对于非技术人员来说也容易上手[^4]。通过简单的标记符号可以快速创建结构化的笔记内容。 #### 创建 Python 笔记的具体方法 为了更好地管理和展示 Python 笔记,建议按照如下方式组织: 1. **标题和子标题** 利用 `#` 来定义不同级别的标题,这有助于构建清晰的文章框架。 2. **代码片段高亮显示** 当记录 Python 代码时,可以通过三对反引号包裹代码,并指定编程语言来启用语法高亮[^1]: ```python def hello_world(): print("Hello, world!") ``` 3. **列表项** 可以使用星号(*) 或者减号(-) 来创建无序列表;使用数字加句点(1., 2.) 形式的编号来创建有序列表。 4. **超链接与图片嵌入** 插入外部资源如教程页面或图表图像,增强笔记的信息量。格式为 `[描述](URL)` 和 `![替代文字](图片地址)`。 5. **表格制作** 表格可以帮助整理数据对比等内容,利用管道符(|)分隔列,短横线(-)划分行。 6. **特殊字符处理** 对于一些特殊的 HTML 实体字符可以直接输入,比如版权符号©、注册商标®等,甚至表情符号也可以直接粘贴进来[^5]。 7. **保存与分享** 完成后的 Markdown 文件(.md),既可以在本地查看,也能上传至 GitHub Pages 等平台发布为静态网站[^2]。 8. **转换为其他格式** 如果希望进一步加工这些笔记,则可借助第三方库如 Python-Markdown 将其转码为更通用的 HTML 文档[^3]。 ```html <script> $.get((searchMap.md || 'readme.md'), function(text) { document.write(markdownit().render(text)); }); </script> ``` 上述脚本展示了如何动态加载并渲染 Markdown 文件中的内容,在浏览器端即时预览效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小孟的CDN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值