Python与GIS

本文介绍了如何使用Python进行GIS中的栅格影像处理,包括读取、替换Nodata数据以及显示TIF。同时,文章还详细讲解了创建和处理矢量数据,如面转栅格、掩膜操作以及点提取栅格数据的方法。通过实例展示Python在GIS领域的强大功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python矢量与栅格数据处理

原创 孟祥帅 祥帅的小屋 2022-10-21 18:55 发表于山东

持续更新ing,欢迎各位点赞关注哦!

python地理信息基础知识,基本图形的创建
https://github.com/CNFeffery/DataScienceStudyNotes

geopandas建立缓冲区与地图处理、合并、交叉、缓冲
https://blog.csdn.net/fengdu78/article/details/107054249

1. Python处理栅格影像

1.1 读取tif

import rasteriofrom rasterio.plot import showfrom matplotlib import colors, cmrs = rasterio.open(r'C:\Users\lenovo\Desktop\pzh_map_dispose\sf1.tif','r')result1=rs.read()

1.2 替换Nodata数据

#满足条件,则替换,否则保持原样result=np.where(result1==result1.min(),np.nan,result1)result# np.unique(rss[0])

out:

array([[[nan, nan, nan, ..., nan, nan, nan],

[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
...,
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan]]])

1.2 显示TIF

import geopandas as gpdshp = gpd.read_file(r"C:\Users\lenovo\Desktop\pzh_map_dispose\pzh_city.shp")fig, ax = plt.subplots(figsize=(5,9))shp.plot(ax=ax,color='none')show(result, transform=rs_mask.transform,ax=ax, cmap='gist_earth')fig.colorbar(cm.ScalarMappable(norm=colors.Normalize(vmin=np.nanmin(result), vmax=np.nanmax(result)), cmap='gist_earth')             , ax=ax,extend='both',fraction=0.05)

2. 从头开始的一个例子——完整版

2.1 创建shp面,并写入文件

import osimport geopandasfrom shapely import geometryimport matplotlib.pyplot as pltx1,y1=30,30  x2,y2=50,50# 对应shapely.geometry中的Polygon,用于表示面,下面我们创建一个由若干Polygon对象组成cq = geopandas.GeoSeries([geometry.Polygon([(x1,y1), (x2,y1), (x2,y2), (x1,y2)]),                          geometry.Polygon([(x2,y1),(55,40), (x2,y2)])                          ],                         index=['1', '2'],  # 构建一个索引字段                         crs='EPSG:4326',  # 坐标系是:WGS 1984                         )cq.to_file(r'simple_poly.shp',           driver='ESRI Shapefile',           encoding='utf-8')cq

2.2 使用geopandas读取

gdf=geopandas.read_file(r'simple_poly.shp')gdf
gdf.plot(column='index')

2.3 面转为栅格——根据字段转栅格

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小孟的CDN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值