lecode解题-最长回文子串

本文介绍了一种寻找字符串中最长回文子串的方法。通过遍历字符串并检查每个可能的回文序列,该算法能够有效地找出最长的回文子串。此外,还提供了一种优化方案以减少内存使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述

class Solution(object):
    def longestPalindrome(self, s):
        """
        :type s: str
        :rtype: str
        """
        if len(set(s)) == 1:
            return s
        palind = []
        for i in range(len(s)):
            left_index = i
            j = left_index + 1
            while s[i] in s[j:]:           
                right_index = s[j:].index(s[i]) + j 
                # print(s[i],j,s[j:],left_index,right_index)
                middle = (left_index + right_index) / 2
                if (left_index + right_index) % 2 == 1:
                    if s[left_index:middle+1] == s[middle+1:right_index+1][::-1]:
                        palind.append(s[left_index:right_index+1])
                else:
                    if s[left_index:middle+1] == s[middle:right_index+1][::-1]:
                        palind.append(s[left_index:right_index+1])
                j = right_index + 1
        palind_len = 0
        result = s[0]
        # print(palind)
        for a in palind:
            if len(a) > palind_len:
                result = a
                palind_len = len(a)        
        return result

优化内存消耗:
在这里插入图片描述

class Solution(object):
    def longestPalindrome(self, s):
        """
        :type s: str
        :rtype: str
        """
        if len(set(s)) == 1:
            return s
        palind = s[0]
        palind_len = 0
        for i in range(len(s)):
            left_index = i
            j = left_index + 1
            while s[i] in s[j:]:           
                right_index = s[j:].index(s[i]) + j 
                sub_s = s[left_index:right_index+1][:]
                if sub_s == sub_s[::-1]:
                    if len(sub_s) > len(palind):
                        palind = sub_s[:]
                j = right_index + 1       
        return palind
### 关于 LeetCode 跳跃游戏 II 的解决方案 #### 问题描述 给定一个非负整数数组 `nums` ,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。目标是以最少的跳跃次数到达最后一个位置。 #### 解决方案概述 这个问题可以通过贪心算法来有效解决[^2]。核心思路是在每一步都做出当前看来最好的选择,即尽可能远地跳跃,从而最小化总的跳跃次数。 #### 算法实现细节 为了更好地理解和解决问题,下面提供了一个 Python 实现的例子: ```python def jump(nums): n = len(nums) max_pos, end, step = 0, 0, 0 for i in range(n - 1): if max_pos >= i: max_pos = max(max_pos, i + nums[i]) if i == end: end = max_pos step += 1 return step ``` 这段代码定义了一个函数 `jump` 来计算从起点到终点所需的最少跳跃次数。变量 `max_pos` 记录了能跳到最远的位置;`end` 表示当前步数下能达到的边界;而 `step` 则记录着已经完成的跳跃次数。 #### 性质分析 值得注意的是,并不是所有的优化问题都可以采用贪心策略求解。对于本题而言,由于满足特定条件下的贪心选择性质和最优子结构特性,因此适合使用贪心算法来进行解答[^3]。 #### 结论 综上所述,“跳跃游戏 II” 属于一类能够运用贪心算法成功处理的问题之一,在实际编码过程中展现了简洁高效的优点。不过需要注意的是,当面对其他类型的挑战时,则需谨慎评估是否同样适用于此类方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

merlin’s girl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值