给你一个二叉树的根节点
root
,判断其是否是一个有效的二叉搜索树。有效 二叉搜索树定义如下:
- 节点的左子树只包含 小于 当前节点的数。
- 节点的右子树只包含 大于 当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:root = [2,1,3] 输出:true示例 2:
输入:root = [5,1,4,null,null,3,6] 输出:false 解释:根节点的值是 5 ,但是右子节点的值是 4 。提示:
- 树中节点数目范围在
[1, 104]
内-231 <= Node.val <= 231 - 1
方法1 递归:
思路:
- 方法1 双指针比较法(pre和node),不需额外定义变量:math.MinInt64, math.MaxInt64:
参考视频题解:你对二叉搜索树了解的还不够! | LeetCode:98.验证二叉搜索树_哔哩哔哩_bilibili- 先【不断向左子树递归】直至最后空节点,然后再自底向上【回溯】的过程中,pre每次保存的都是之前上一层栈空间中的根节点,也就是:
- 当 node = root 时,pre = root.Left,pre的值应永远小于node的值
- 当 node = root.Right时,pre = root,pre的值应永远小于node的值
- 先【不断向左子树递归】直至最后空节点,然后再自底向上【回溯】的过程中,pre每次保存的都是之前上一层栈空间中的根节点,也就是:
- 方法2 利用上下界递归判断,需额外定义变量:math.MinInt64, math.MaxInt64:
- 引入上下边界(参考LeetCode大神题解)
- 对于树的每个节点 val ,设其上下边界 low , high。(用 long 防止 INT_MAX 溢出 )
- 判断根结点时,须满足 low < val < high ,否则返回 false
- 判断左节点时,仅 上界 变化 ( 新上界为 high 与 val 较小值。又因 val 必小于 high,故新上界为 val )
- 判断右节点时,仅 下界 变化 ( 同理,新下界为 val )
- 方法3 迭代法
这里推荐方法1 通用性更高,如果给你一个 LONG_MIN 或 LONG_MAX 的测试用例,那么方法2还是有数值边界问题。
时间复杂度:O(n) 在递归调用的时候二叉树的每个节点最多被访问一次,因此时间复杂度为 O(n)
空间复杂度:O(n) 其中 n 为二叉树的节点个数。递归函数在递归过程中需要为每一层递归函数分配栈空间,所以这里需要额外的空间且该空间取决于递归的深度,即二叉树的高度。最坏情况下二叉树为一条链,树的高度为 n ,递归最深达到 n 层,故最坏情况下空间复杂度为 O(n)
Go版 方法1 & 方法2:
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
// 方法1 双指针比较法(pre和node),不需额外定义变量:math.MinInt64, math.MaxInt64:
// 代码随想录视频题解:https://www.bilibili.com/video/BV18P411n7Q4/?spm_id_from=333.337.search-card.all.click&vd_source=2c268e25ffa1022b703ae0349e3659e4
// 思路:中序遍历(左中右)为升序,每次比较左节点和根节点值,或比较根节点和右节点值
func isValidBST(root *TreeNode) bool {
var pre *TreeNode
var dfs func(node *TreeNode) bool
dfs = func(node *TreeNode) bool {
if node == nil {
return true // 空二叉树也是一颗特殊的BST
}
// 首次【不断向左子树递归】直至最后空节点
l := dfs(node.Left)
if pre != nil && node.Val <= pre.Val {
return false
}
// 然后在自底向上【回溯】过程中,pre每次保存之前上一层栈空间中的根节点,即:
// 当 node = root 时,pre = root.Left,满足:pre的值 < node值
// 当 node = root.Right 时,pre = root,满足:pre的值 < node值
pre = node
r := dfs(node.Right)
return l && r
}
return dfs(root)
}
// 方法2 官方题解(不推荐) 需额外定义变量:math.MinInt64, math.MaxInt64:
func isValidBST(root *TreeNode) bool {
return dfs(root, math.MinInt64, math.MaxInt64)
}
func dfs(node *TreeNode, lower, upper int) bool {
if node == nil {
return true // 空二叉树也是一颗特殊的BST
}
if node.Val <= lower || node.Val >= upper {
return false
}
// 中序遍历:左中右
// 不断向左子树递归时,当前节点值应大于整颗左子树,node.Val为上限 upper
left := dfs(node.Left, lower, node.Val)
// 不断向右子树递归时,当前节点值应小于整颗右子树,node.Val为下限 lower
right := dfs(node.Right, node.Val, upper)
return left && right
}
C++版 方法1 & 方法3:
// 方法1 递归:
bool isValidBST(TreeNode* root) {
return recurse(root, LONG_MIN, LONG_MAX);
}
bool recurse(TreeNode* root, long long low, long long high) { // low和hight:上届和下界
// 递归终止条件
if (root == NULL) // 空树也是特殊的二叉搜索树
return true;
if (root->val <= low || root->val >= high) // 如果当前节点值不在上下界内,false
return false;
// 下探到下一层
return recurse(root->left, low, root->val) && recurse(root->right, root->val, high);
// error:不能拆开写,左子树和右子树应当同时判断,而不是先后关系:
// return recurse(root->left, low, root->val); // 左子树:上界为当前节点值(当前节点的左子树都小于当前节点值),下界不动
// return recurse(root->right, root->val, high); // 右子树:下界为当前节点值(当前节点的右子树都大于当前节点值),上届不动
}
// 方法3 迭代法:
// 思路:二叉搜索树的中序遍历为升序排列,故比较遍历到的当前节点与前一个节点的值是否满足:Val前 < val当前
bool isValidBST(TreeNode* root) {
stack<TreeNode*> st;
// INT_MIN是先转换成long long类型然后再减去1的,也就是比所有的测试用例的值都要小了(测试用例的最小值是INT_MIN)
// 中序遍历的结果应该是递增的,所以这样没错,左边一直小于右边就是true,包括最左边的数,它的左边肯定是最小值
// 保留节点的上界与下界(因为当前节点值应大于左子树值,而不仅是左节点;当前节点值应大于右子树值,而不仅是右节点)
long long leftChildVal = (long long)INT_MIN - 1; // 左孩子节点
while (root != NULL || !st.empty())
{
while (root != NULL)
{
st.push(root);
root = root->left;
}
if (!st.empty())
{
root = st.top();
if (root->val <= leftChildVal) // // 若当前根节点值大于其右孩子,不满足二叉搜索树中序遍历值递增性质
return false;
leftChildVal = root->val;
st.pop();
root = root->right;
}
}
return true;
}