Logistic 回归又称 logistic 回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。
正文
简介
从名字上来看,读者很容易把逻辑回归也理解成是一种用于拟合的回归算法。但实际上逻辑回归不是回归,它是一种分类算法。
比如说,预测一个人有没有生病,有就输出 1, 没有就输出 0。 这里就可以运用逻辑回归模型。从这个例子可以看到,逻辑回归最显著的特点就是其输出值是离散的值。
预测函数——二元分类
要求:函数的值域为 [0,1]。然后函数能被选定一个基准值,当计算出的值大于基准值时返回 1, 小于基准值时返回 0。 同时,函数具有非常好的对称性并且对输入超过一定范围就会不敏感。
于是,我们选择Sigmoid 函数作为预测函数(这个函数在许多领域有重要作用,也被称之为 S 形函数)
结合图像可以看到 ,Sigmoid 函数完美的符合了我们的所有要求。
同时,因为逻辑回归是一种广义线性回归模型,所以我们可以结合线性回归的预测函数来看