人脸重演论文合集 Collection of face Reenactment papers

简介

以下是我收集的一些有关人脸重演的论文,以时间线倒叙列出,相同年份的按字母顺序排列,欢迎各位查阅。我将在以后的日子慢慢更新,欢迎订阅。如果各位看官有想补充的论文,欢迎在评论区提出哦~ (主要提出最近几年的,老论文整已经有了一两篇,写发展现状凑字数已经行了)

论文

2024年

  • 3D-Aware Talking-Head Video Motion Transfer (WACV): paper.

2023年

  • DiffusionRig: Learning Personalized Priors for Facial Appearance Editing(CVPR 2023): paper. code.
    👆我觉得这个挺屌的,但是用作视频的话会闪。
  • High-Fidelity and Freely Controllable Talking Head Video Generation(CVPR, 2023): paper. code. 👈他git上说不开源
  • HR-Net: a landmark based high realistic face reenactment network (TCSVT, 2023): paper.
  • MetaPortrait: Identity-Preserving Talking Head Generation with Fast Personalized Adaptation (CVPR, 2023) paper. code.

2022年

  • Adaptive Affine Transformation(AdaAT): A Simple and Effective Operation for Spatial Misaligned Image Generation. (MM2022): paper. code.
    👆该作者发的DINet非常经典,其中用的就是AdaAT,我怀疑cv6的免训练数字人用的就是这个。
  • Dual-Generator Face Reenactment (CVPR, 2022): paper. code
  • Face2Faceρ: Real-Time High-Resolution One-Shot Face Reenactment: paper. code.
  • Finding Directions in GAN’s Latent Space for Neural Face Reenactment (BMVC, 2022): paper. code.
  • FSGANv2: Improved Subject Agnostic Face Swapping and Reenactment (PAMI, 2022): paper.

2021年

  • A unified framework for high fidelity face swap and expression reenactment (TCSVT, 2021): paper
  • LI-Net: Large-Pose Identity-Preserving Face Reenactment Network (ICME, 2021): paper.
  • One-shot Face Reenactment Using Appearance Adaptive Normalization (AAAI, 2021): paper.
  • PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering (ICCV, 2021): paper.

2020年

  • ActGAN: Flexible and Efficient One-shot Face Reenactment (IWBF, 2020): paper.
  • First Order Motion Model for Image Animation (NIPS, 2020): paper. code.
    👆老经典了。
  • FReeNet: Multi-Identity Face Reenactment (CVPR, 2020): paper. code.
  • Learning Identity-Invariant Motion Representations for Cross-ID Face Reenactment(CVPR, 2020): paper
  • MarioNETte: Few-shot Face Reenactment Preserving Identity of Unseen Targets(AAAI, 2020): paper.
  • Neural Head Reenactment with Latent Pose Descriptors(CVPR, 2020): paper. code.
  • Realistic Face Reenactment via Self-Supervised Disentangling of Identity and Pose(AAAI, 2020): paper.
  • StyleRig: Rigging StyleGAN for 3D Control over Portrait Images(CVPR2020): paper. page.

2019年

  • FSGAN: Subject Agnostic Face Swapping and Reenactment (ICCV, 2019) paper. code.
  • One-shot Face Reenactment (BMVC, 2019): paper. code.

2018年

  • GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV, 2018): paper. code.
  • ReenactGAN: Learning to Reenact Faces via Boundary Transfer (ECCV, 2018): paper. code.

2017年

  • Synthesizing Obama: learning lip sync from audio (TOG, 2017): paper.
    👆合着cv6的数字人借鉴了这篇文章啊

2016年

  • Face2Face: Real-time Face Capture and Reenactment of RGB Videos (CVPR, 2016): paper.

结语

先写这么多。。。。
我有一个梦想。

### VGG在人脸表情识别中的应用 VGG(Visual Geometry Group)网络是一种经典的深度卷积神经网络架构,最初由牛津大学的Visual Geometry Group提出[^1]。VGG网络因其强大的特征提取能力,在多个计算机视觉任务中表现出色,包括人脸识别和表情识别。对于人脸表情识别的具体实现,以下是一些相关的英文文献和资源: 1. **VGGFace2 Dataset and CNN Architecture**: VGG团队发布的VGGFace2数据集及其对应的CNN架构是研究人脸表情识别的重要基础。该数据集包含超过300万张图像,覆盖了近10,000个身份,为训练高精度的人脸识别模型提供了丰富的数据支持[^4]。此外,VGGFace2的相关论文详细描述了如何利用深度学习技术进行人脸特征提取,并可扩展到表情识别任务。 2. **Expression Recognition with Pre-trained Models**: 许多研究者基于VGG网络的预训练模型进行微调,以适应人脸表情识别任务。例如,论文《Facial Expression Recognition Using Deep Learning: A Review》探讨了如何使用VGG等预训练模型作为特征提取器,并结合其他分类方法实现高精度的表情分类[^3]。 3. **Real-time Face Capture and Reenactment**: 虽然该研究主要关注于实时人脸捕捉重演,但它也涉及到了表情识别的技术细节。通过分析VGG网络在特征提取方面的表现,研究者展示了如何将VGG应用于动态表情变化的检测和分类。 以下是一个简单的代码示例,展示如何加载VGG预训练模型并用于表情识别任务: ```python import torch import torchvision.models as models # 加载VGG16预训练模型 vgg = models.vgg16(pretrained=True) # 修改最后一层以适应表情分类任务 num_features = vgg.classifier[6].in_features features = list(vgg.classifier.children())[:-1] # 去掉最后一层 features.extend([torch.nn.Linear(num_features, 7)]) # 假设有7种表情类别 vgg.classifier = torch.nn.Sequential(*features) # 打印修改后的模型结构 print(vgg) ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值