李宏毅机器学习作业二

前言

第二个作业是年收入判断,任务是做一个线性二元分类器,根据人们的个人资料来判断其年收入是否高于50000美元。这里用了逻辑回归和概率生成模型两种方法。

 

 

数据集有X_train,Y_train,X_test三个文件。这三个文件是老师事先帮我们将数据整理成csv格式并且全都是数字的数据。

X_train X_test :每一行包含一个510-dim的特征,代表一个样本。

Y_train: label = 0 表示 "<=50K" label = 1 表示 " >50K "
训练数据共
54256

测试集大概20000多个

参数共510个。

那么可以得出结论:

模型的输入是510

模型输出是一个布尔值表示预测的是或不是。

        上课共讲了两种方法,一种是逻辑回归,一种是生成模型。只不过生成模型的wb通过平均值和协方差直接求出来,而不需要梯度下降进行收敛获得。具体步骤和用到的Normalize函数和分类函数都一样。

逻辑回归方法

逻辑回归:

1.数据准备

2. 一些有用的函数

3.梯度与损失

4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值