自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 资源 (5)
  • 收藏
  • 关注

原创 深入浅出强化学习算法系列

此时,可用深度神经网络作为函数逼近器,来近似强化学习中的策略函数或价值函数【也可以对环境进行建模,得到环境模型-即状态转移函数和奖励函数】,即深度强化学习。已知策略梯度PG算法,可以用梯度上升的方法来更新θ,但是,如果每次θ更新的步长过大,会导致新策略函数与当前策略函数偏离较远,进而使得策略函数性能急剧下降甚至崩溃。时序差分以贝尔曼方程作为基础,即,当前状态的价值由即时奖励和下一个状态的价值决定。智能体不需要制定显式的策略,它维护一个价值表格或价值函数,并通过这个价值表格或价值函数来选取价值最大的动作。

2025-03-08 16:10:30 495

原创 马尔可夫决策过程

强化学习,是在与环境互动过程中,为了达成一个目标而进行的学习过程。与监督学习的区别:反馈模式不同:有监督学习有反馈,无监督学习无反馈,强化学习有延迟反馈。学习目标不同:强化学习关注长期收益,监督学习关注标签或误差。学习模式不同:强化学习是学习+决策过程,具备和环境交互能力,而监督学习不具备。

2025-03-06 21:44:42 697

原创 【Docker的安装卸载】

docker安装与卸载

2024-01-05 11:40:16 453 1

原创 【ubantu系统各种报错】人间悲喜是共通的,相同错误可以快速解决以节省时间

可以通过删除/var/lib/dpkg/info /下面所有的sougou开头的文件,再通过 sudo apt-get -f install后,再执行sudo dpkg -i ./xxxx可以解决掉大部分问题。

2024-01-05 11:30:45 513 1

原创 【opencv及Tansformer报错】

把_,contours, hierarchy = cv2.findContours(skin, cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)改为contours, h = cv2.findContours(skin, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)就不报错了,表示读入图片出错,检查下摄像头能否正常驱动、打开,读入图片等等,自己报错是因为,把摄像头插在usb分线上会报错,直接插在usb口上不会报错。

2024-01-05 11:16:54 1437 1

原创 【ubantu系统环境配置NVIIDIA+cuda】给入门小白提供参考

双系统win10+ubantu系统。

2024-01-05 11:12:56 1246 1

原创 【开箱即用:Yolov8-pose多类别多目标的关键点检测】内含数据转换代码、TensorRT推理代码

当前网络上的yolov8-pose推理代码基本上都是基于一个类别的代码写的,且很多代码参数都是写死的,在实际工程中遇到多类别的关键点检测项目,代码修改难度较大。因此,写一篇文章,从yolov8-pose的原理出发,记录多类别多目标的关键点检测从训练到推理的过程,即存在多个类别,每个目类别包含多个关键点,且每一个类别中存在多个目标。附上对应的数据转换代码及推理代码。如有不同技术理解,欢迎探讨。

2024-01-04 18:41:06 2496 11

yolov5_weights.zip

此文件是yolov5权重文件,包含5种不同的权重模型(yolov5s.pt、yolov5m.pt、yolov5l.pt、yolov5-spp.pt、yolov5x.pt) 但是此文件为旧版本的权重文件,所以要下载最新的详见本人另一篇博客

2020-08-04

yolov5预训练模型.zip

此文件是yolov5的预先训练模型(包含yolov5s.pt、yolov5x.pt、yolov5l.pt),可以直接用来进行迁移学习、检测和测试,更新日期为2020年8月4日。验证8月4日github上面代码可以直接训练。

2020-08-04

tensorflow-1.14.0-cp27-non-linux_aarch64.whl.tar

tf的arm版本:tensorflow-1.14.0-cp27-non-linux_aarch64.whl,可以在arm64内核下构建tensorflow环境。

2021-01-28

tensorflow-1.5.0-cp27-cp27m-linux_aarch64.whl.tar

arm版本的tf,可以在基于arm架构的平台、设备上pip进行安装。

2021-01-26

tensorflow-1.15.4+nv20.12-cp36-cp36-linux_aarch64.whl.tar

给予arm平台的tf文件,可以在arm设备、平台如鲲鹏服务器上编译。

2021-01-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除