复数的乘幂与方根
乘积与商
定理一:两个复数乘积的模等于它们模的乘积;两个复数乘积的辐角等于它们的辐角的和。
∣z1z2∣=∣z1∣∣z2∣|z_1z_2|=|z_1||z_2|∣z1z2∣=∣z1∣∣z2∣
Arg(z1z2)=Argz1+Argz2Arg(z_1z_2)=Argz_1+Argz_2Arg(z1z2)=Argz1+Argz2
由于辐角的多值性,上式等式两端都是由无穷多个数构成的两个数集,对于左端的任一值,右端必有一值和它相等,反过来也一样。令Argz1=θ1Argz_1=\theta_1Argz1=θ1,Argz2=θ2Argz_2=\theta_2Argz2=θ2,Arg(z1z2)=θArg(z_1z_2)=\thetaArg(z1z2)=θ所以θ=θ1+θ2\theta=\theta_1+\theta_2θ=θ1+θ2
定理二:两个复数的商的模等于它们的模的商;两个复数的商的辐角等于被除数与除数的辐角之差。
∣z2z1∣=∣z2∣∣z1∣\left|\frac{z_2}{z_1}\right|=\frac{|z_2|}{|z_1|}∣∣∣∣z1z2∣∣∣∣=∣z1∣∣z2∣
Arg(z2z1)=Argz2−Argz1Arg\left(\frac{z_2}{z_1}\right)=Argz_2-Argz_1Arg(z1z2)=Argz2−Argz1
用指数形式表示复数:
z1=r1eiθ1z_1=r_1e^{i\theta_1}z1=r1eiθ1,z2=r2eiθ2z_2=r_2e^{i\theta_2}z2=r2eiθ2
z2z1=r2r1ei(θ2−θ1)\frac{z_2}{z_1}=\frac{r_2}{r_1}e^{i(\theta_2-\theta_1)}z1z2=r1r2ei(θ2−θ1) (r1≠0)(r_1\neq 0)(r1=0)
幂与根
nnn个相同复数zzz的乘积称为zzz的n\bm nn次幂,记作znz^nzn,即zn=z⋅z⋯z⏟n个z^n=\underbrace{z\bm\cdot z\cdots z}_{n个}zn=n个z⋅z⋯z
zn=rn(cosnθ+isinnθ)z^n=r^n(\cos n\theta+i\sin n\theta)zn=rn(cosnθ+isinnθ)
棣莫弗公式:(cosθ+isinθ)n=cosnθ+isinnθ(\cos\theta+i\sin\theta)^n=\cos n\theta+i\sin n\theta(cosθ+isinθ)n=cosnθ+isinnθ
z\bm zz的n\bm nn次根:记作zn\sqrt[n]{z}nz,当zzz的值不为零时,就有nnn个不同的值。
w=zn=r1n(cosθ+2kπn+isinθ+2kπn)w=\sqrt[n]{z}=r^{\frac{1}{n}}(\cos\frac{\theta+2k\pi}{n}+i\sin\frac{\theta+2k\pi}{n})w=nz=rn1(cosnθ+2kπ+isinnθ+2kπ)
当k=0,1,2,⋯ ,n−1k=0,1,2,\cdots,n-1k=0,1,2,⋯,n−1时,得到nnn个相异的根。