证明:设{}是
中的柯西点列,其中
={
}
由柯西列的定义:对,
正整数N,当n,m>N时,
因此,对每一个固定的j,当n,m > N时,成立
这就是说,数列是柯西点列(注意此处是指
是R中的Cauchy列),因此,
由R的完备性: 数
,使得
令,下面证明
,且
(注:若对,
正整数N,当n,m>N时,
)
在(2)式中,令,可以得到:
对一切m > N,成立 (因为有了极限才可以取极限)
又
,因此
实数
,使得对于所有j,成立
因此,
这就证明了(有界),由(3)式,可知对一切的m > N,成立:
因此
是完备度量空间,证毕。