NVIDIA安装程序失败-Nsight Visual Studio Edition失败解决办法

本文讲述了博主在升级CUDA版本时遇到NsightVisualStudioEdition无法卸载的问题,通过深入排查,发现安装失败源于NsightVisualStudioEdition的残留。博主提供了详细步骤,包括手动找到并运行NsightVisualStudioEdition安装程序,以及在VisualStudioInstaller中选择正确的C++相关组件以确保安装成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

博主是要升级cuda版本,那么在安装新版本之前需要卸载以前的版本。
博主一溜卸载下去,最后有这么个东西卸载不掉,Nsight Visual Studio Edition

在这里插入图片描述
在这里插入图片描述
不管是电脑系统卸载还是360卸载,都卸载不掉。
此时安装新的cuda也遇到了这个问题
在这里插入图片描述
由于Nsight Visual Studio Edition的安装失败,直接结束了整个安装进程。此时博主开始为期几天的攻坚战。
网上到处查找NVIDIA安装程序失败结局办法,各种办法都试了,都未果。
最多的建议方法是各种删除干净,大家可以自行查找,博主因为那些都没用,所以就没记录下来。
也有的博主是建议跳过这一步的安装,博主强迫症加上这个的作用

在这里插入图片描述
所以直接没有选择该解决方案。而是准备继续死磕。
干货来了:

  • 第一步 在打开NIVIDA安装程序后,进入打开程序时显示的临时路径(我的默认临时路径是./AppData/Local/Temp/cuda/),并在路径下找到nsight_vse。双击应用程序nsight_visual_studio_edition-windows-x86_64-[nsight vse版本号].msi。这里是Nsight Visual Studio Edition的安装程序,应该。
    在这里插入图片描述博主这里是出现这个问题,那就确诊了,NVIDIA安装程序失败的病灶在此。
  • 第二步 打开Visual Studio Installer
    在这里插入图片描述
    选择与nsight VSE匹配的版本,第一步的图里就是它的版本数据,这个时候大多数应该对应的都是Visual Studio2022。所以选择2022【修改】点击进去:
    在这里插入图片描述
    划重点,桌面开发的【C++分析工具】和【MSVC v142 - VS 2019 C++ x64/x86 生成工具】选上,这里博主当时是图里箭头所示没有选择
    在这里插入图片描述
    这里都选上后点击修改,接下来就等着它安装完毕吧。
  • 最后成功安装,忘记截图了。
### Nsight Visual Studio Edition 安装失败的原因及解决方案 Nsight Visual Studio EditionNVIDIA 提供的一个集成开发环境插件,用于支持 GPU 调试和性能分析功能。然而,在某些情况下,该组件可能会导致 CUDA 的安装失败。以下是关于此问题的错误原因以及两种常见的解决方案。 #### 错误原因 Nsight Visual Studio Edition 安装失败的主要原因是其与特定版本的 Microsoft Visual Studio 或其他依赖项之间的不兼容性。具体来说: - 如果使用的 Visual Studio 版本较新或存在未满足的依赖项,则可能导致安装过程中出现冲突[^3]。 - 可能还涉及操作系统配置、权限不足或其他软件冲突等问题[^1]。 --- #### 方案一:跳过 Nsight Visual Studio Edition 的安装 对于希望快速解决问题的用户,可以选择在自定义安装界面中取消勾选 **Nsight Visual Studio Edition** 组件。这样可以绕过可能引发问题的部分并完成其余部分的正常安装。操作方法如下: 1. 打开 CUDA 自定义安装向导; 2. 在可选组件列表中找到 **Nsight Visual Studio Edition** 并将其取消勾选[^2]; 3. 按照提示继续执行后续步骤直至安装结束。 需要注意的是,这种方法虽然能够迅速解决当前问题,但会失去 Nsight 工具集带来的调试和优化能力,因此仅适用于不需要这些高级特性的场景。 --- #### 方案二:修复潜在的兼容性和依赖关系问题 如果希望通过更根本的方式处理这个问题,则需仔细检查系统环境中是否存在影响因素,并采取相应措施加以修正。主要步骤包括但不限于以下几个方面: 1. **确认 Visual Studio 配置是否正确** - 使用 Visual Studio Installer 更新至最新稳定版(推荐至少为 Visual Studio 2019/2022)。 - 确保已启用以下工作负载及其关联组件: - `Desktop development with C++` (桌面 C++ 开发) - `C++ profiling tools` (C++ 性能分析工具) - 对应于目标架构的支持库(如 MSVC v142-VS 2019 C++ x64/x86 构建工具)。 2. **验证硬件驱动程序状态** - 确认显卡驱动已经更新到最新的 WHQL 认证版本。 - 建议访问 NVIDIA 官方网站获取适配的操作系统和 CUDA 版本所需的驱动包。 3. **调整 Windows 设置以增强稳定性** - 关闭实时防病毒扫描或者临时排除相关文件夹路径以防干扰。 - 尝试切换管理员账户重新运行安装程序来规避权限限制。 通过上述手段通常可以有效缓解因基础条件不符合而导致的一系列异常现象。不过实际效果仍取决于具体情况而定。 --- ```python # 示例代码片段展示如何检测 Python 中是否有可用的 CUDA 支持 import torch if torch.cuda.is_available(): print("CUDA is available.") else: print("No CUDA support detected.") ``` ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我宿孤栈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值