
SLAM学习
文章平均质量分 70
主要介绍SLAM的学习过程
RichExplorer
智能辅助驾驶探索者~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
视觉SLAM笔记--第5篇: 基础矩阵F和单应矩阵H的推导过程,区别分析
基础矩阵F和单应矩阵H的推导过程,区别分析参考博客1. 基础矩阵F1.1 Essential Matrix1.2 Fundamental Matrix1.3 两者区别2. 单应矩阵H3. 基础与单应矩阵区别4. 详细推导求解参考博客参考博客:https://blog.csdn.net/try_again_later/article/details/886555631. 基础矩阵F1.1 E...原创 2020-05-07 22:16:35 · 3387 阅读 · 1 评论 -
视觉SLAM笔记--第4篇: 高斯牛顿法(GN)和列文伯格-马夸特算法(LM)的算法流程,优劣分析
GN和LM的算法流程,优劣分析参考博客数学基础(泰勒展开)1. 高斯牛顿法(GN法)1.1 基本原理1.2 GN迭代算法步骤1.3 优缺点2. 列文伯格-马夸特法(LM法)2.1 基本原理2.2 LM迭代算法步骤2.3 优缺点参考博客参考博客: https://blog.csdn.net/heshaofeng2ly/article/details/105812746#3GN_50参考博客:L...原创 2020-05-07 16:55:37 · 6614 阅读 · 0 评论 -
视觉SLAM笔记--第3篇: SLAM轨迹评估工具(evo安装与使用)
SLAM轨迹评估工具--evo安装及使用1. evo安装1.1 更新pip1.2 安装evo2. evo使用2.1 数据集转换格式2.2 evo命令格式2.3 其他参数选项-[options]2.4 显示轨迹evo_traj2.5 绝对位姿误差evo_ape2.6 相对位姿误差evo_rpe3. 后续计划1. evo安装1.1 更新pip# 打开终端,笔者是在python2.7基础上更新,当...原创 2020-04-18 11:34:31 · 5235 阅读 · 7 评论 -
视觉SLAM笔记--第2篇: ORB_SLAM2编译运行
ORB_SLAM2编译运行1. ORB-SLAM2编译运行1.1 安装依赖库1.2 编译1.3 运行测试1.4 测试结果2. 出现的问题及解决方案2.1 "cv_bridge"问题2.2 链接库问题3. 后续计划1. ORB-SLAM2编译运行1.1 安装依赖库编译ORBSLAM2需要的第三方依赖库包括:OpenCV ( 版本 >2.4.3)Eigen3 (版本 > 3.1...原创 2020-04-17 22:57:57 · 1341 阅读 · 2 评论 -
视觉SLAM笔记--第1篇: Ubuntu16.04搭建SLAM开发环境
ubuntu16.04搭建SLAM开发环境参考博客1. Eigen线性代数库2. Opencv开源视觉库参考博客[博客链接]:https://blog.csdn.net/qq_38373843/article/details/827927201. Eigen线性代数库安装sudo apt-get install libeigen3-devsudo updatedblocate ...原创 2020-04-16 20:14:14 · 1239 阅读 · 0 评论 -
视觉SLAM笔记--第8篇: DSO编译运行
DSO编译运行1. DSO编译运行1.1 安装依赖库1.2 编译1.3 运行测试1.4 测试结果2. 出现的问题2.1 evo评估问题1. DSO编译运行1.1 安装依赖库编译DSO依赖库包括:OpenCV(版本>3.0)Eigen3Pangolinziplib(不需要下载)前三个依赖库安装教程:安装教程;1.2 编译# 将DSO代码拷贝下来git clone https://github.com/JakobEngel/dso.git# 安装依赖库sudo apt-ge原创 2020-05-27 17:05:49 · 2029 阅读 · 2 评论 -
视觉SLAM笔记--第7篇: 单目相机位姿估计流程
单目相机位姿估计流程整体流程1. 坐标系变换2. 对极约束3. 单目初始化4. 三角测量5. 求解空间3D坐标6. 最小化重投影误差整体流程1. 坐标系变换已知:匹配的像素点对(u,v),(u′,v′)(u,v),(u^{'},v^{'})(u,v),(u′,v′),相机内参矩阵KKK求解:相机归一化坐标(X′,Y′,1)(X^{'},Y^{'},1)(X′,Y′,1)通过相机与像素间的坐标变换关系,可以得到下面公式:[uv1]=[fx0cx0fycy001][X′Y′1]\left[原创 2020-05-09 12:07:29 · 5105 阅读 · 0 评论 -
视觉SLAM笔记--第6篇: 单目初始化和三角测量
单目初始化和三角测量参考博客1. 三角测量2. 单目初始化参考博客参考博客:https://blog.csdn.net/llfjcmx/article/details/834103181. 三角测量在得到了相机的运动之后,下一步我们需要用相机的运动来估计特征点的空间位置,但是在单目SLAM中,仅通过单张图像是无法获得像素的深度信息的,需要用三角测量(三角化)的方法来估计地图点的深度。三角测量是指通过在两处观察同一个点的夹角,来确定该点的距离。考虑图像I1,I2I_{1},I_{2}I1,I2转载 2020-05-08 20:52:36 · 3845 阅读 · 1 评论