(实战)[2022 Guinness Challenge]-001

本文记录了一次自动驾驶小车竞赛的策略优化过程,从初始速度设置到逐步调整,包括不同速度范围、学习率和最大回合数的试验。通过多次迭代,作者观察到速度增加导致小车偏离最优线路,最终选择优化策略并调整参数以提高稳定性。最佳成绩为单圈10.5329秒,但考虑到速度过快可能导致的不稳定,作者决定放弃当前策略并计划重新训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 简介

比赛链接:

比赛开始日期:2022/07/15 00:00:00
比赛截止日期:2022/09/15 12:00:00
赛道:re:Invent 2018
规则:5圈总计时间最短排名,出界一次罚时3秒

在这里插入图片描述

2022/09/13:

2. 策略:

1. 完成率优先 progress/steps 给较大系数
2. 以小车当前位置与最优线路的距离为基数 乘以 速度的n次方
3. 根据最优线路计算不同位置的转角范围给第2步的结果一个合适的系数
4. 将上述结果相加

3. 速度迭代:

3.1 第一次

speed: [0.8,1.6]
steer: [-20,30]
batch size: 512
learn rate: 0.0005
max episodes: 300

3.1.1 最好记录

在这里插入图片描述
5圈平均时间 65s, 单圈 13s

3.2 第二次

speed: [1,1.8]
steer: [-20,30]
batch size: 512
learn rate: 0.0004
max episodes: 160

3.2.1 最好记录

在这里插入图片描述
5圈平均时间 60s, 单圈 12s

3.2.2 结论

速度不快时,小车还是能稳定走最优线路

3.2.3 部分评估图展示

最快一圈: 11.405s
在这里插入图片描述
11.543s
在这里插入图片描述
最慢的一圈: 16.691, 可以看到在切弯的时候出界了,本地设置时出界一次5s,也就是差不多平均每圈接近12s
在这里插入图片描述

3.3 第三次

speed: [0.9,2.0]
steer: [-20,30]
batch size: 256
learn rate: 0.0004
max episodes: 120

3.3.1 最好记录

在这里插入图片描述
单圈大概 11.1654s

3.4 第四次

speed: [1.0,2.0]
steer: [-20,30]
batch size: 256
learn rate: 0.0003
max episodes: 140

3.4.1 最好记录

在这里插入图片描述
平均单圈成绩: 105.329/10= 10.5329s

3.4.2 部分评估图展示

最快一圈: 9.928s
在这里插入图片描述

最慢一圈: 11.190s
在这里插入图片描述

3.4.3 结论

从小车轨迹可以看出随着速度的增加,小车与最优线路的重合度变小了,并且通过小车的数据来看在转弯之前的速度较小,于是在[1.0,2.0] 这个速度段我修改了reward_function.py策略里面的一些参数再训练了一次。

3.5 第五次

speed: [1.0,2.0]
steer: [-20,25]
batch size: 256
learn rate: 0.0003
max episodes: 140

3.5.1 最好记录

在这里插入图片描述
最快一圈: 9.254s
在这里插入图片描述
最慢一圈: 10.782s
在这里插入图片描述

结论: 由于发现上面的策略在速度大的时候很难保持最优线路的拟合,估计后期的迭代很难提高速度,考虑再三我放弃了这个策略,决定优化策略之后再重新训练,我将上述结果上传到比赛后的成绩。

在这里插入图片描述
第一页排名:
在这里插入图片描述

4. 修改策略:

1. 完成率优先 progress/steps 给较大系数
2. 以小车当前位置与最优线路的距离为基数 乘以 速度的n次方
3. 根据最优线路计算不同位置的转角范围给第2步的结果一个合适的系数
4. 将上述结果相乘

5. 速度迭代:

Pending

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rambo.Fan

码字不易,打赏有动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值